Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Rat lung contains a developmentally regulated manganese superoxide dismutase mRNA-binding protein.
H Fazzone, … , A Wangner, L B Clerch
H Fazzone, … , A Wangner, L B Clerch
Published September 1, 1993
Citation Information: J Clin Invest. 1993;92(3):1278-1281. https://doi.org/10.1172/JCI116700.
View: Text | PDF
Research Article

Rat lung contains a developmentally regulated manganese superoxide dismutase mRNA-binding protein.

  • Text
  • PDF
Abstract

It has become increasingly clear that RNA-binding proteins play an important role in the regulation of gene expression. The presence in rat lung of a specific, redox-sensitive catalase RNA-binding protein was recently reported (Clerch, L. B., and D. Massaro, 1992. J. Biol. Chem. 267:2853). In order to determine if specific manganese superoxide dismutase (MnSOD) RNA-binding proteins exist, we tested whether protein in rat lung extract would bind to 32P-labeled MnSOD RNA. Using a gel mobility shift assay we show rat lung protein forms specific complexes with a 216 b fragment of the 3' untranslated region of MnSOD RNA and the binding requires the presence of free sulfhydryl groups. Competition studies indicate MnSOD RNA-binding protein is different from catalase RNA-binding protein. Furthermore, unlike catalase RNA-binding protein, rat lung MnSOD RNA-binding protein activity is developmentally regulated; there is less MnSOD RNA-protein binding activity in adult rat lung extract compared to prenatal or neonatal rat lung extracts. We conclude the lung contains developmentally regulated MnSOD mRNA-binding protein that is redox sensitive.

Authors

H Fazzone, A Wangner, L B Clerch

×

Full Text PDF | Download (1.01 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts