Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116699

Regulation of human aortic endothelial cell-derived mesenchymal growth factors by allogeneic lymphocytes in vitro. A potential mechanism for cardiac allograft vasculopathy.

C R Wagner, T E Morris, G D Shipley, and J D Hosenpud

Oregon Cardiac Transplant Program, Department of Medicine, Oregon Health Sciences University, Portland 97201.

Find articles by Wagner, C. in: PubMed | Google Scholar

Oregon Cardiac Transplant Program, Department of Medicine, Oregon Health Sciences University, Portland 97201.

Find articles by Morris, T. in: PubMed | Google Scholar

Oregon Cardiac Transplant Program, Department of Medicine, Oregon Health Sciences University, Portland 97201.

Find articles by Shipley, G. in: PubMed | Google Scholar

Oregon Cardiac Transplant Program, Department of Medicine, Oregon Health Sciences University, Portland 97201.

Find articles by Hosenpud, J. in: PubMed | Google Scholar

Published September 1, 1993 - More info

Published in Volume 92, Issue 3 on September 1, 1993
J Clin Invest. 1993;92(3):1269–1277. https://doi.org/10.1172/JCI116699.
© 1993 The American Society for Clinical Investigation
Published September 1, 1993 - Version history
View PDF
Abstract

Cardiac allograft vasculopathy is thought to be triggered by an alloreactive response to the donor coronary vasculature, resulting in smooth muscle cell proliferation and ultimate occlusion of the donor coronary arteries. To determine whether allogeneic lymphocytes are capable of regulating endothelial-derived smooth muscle cell (SMC) growth factors, human aortic endothelial cells (HAECs) were exposed to allogeneic lymphocytes. The HAEC-lymphocyte co-cultures were assessed for (a) lymphocyte proliferation in response to the allogeneic HAECs; (b) release of soluble factors that stimulate human aortic SMC proliferation; and (c) alteration of HAEC mRNA levels for a panel of known SMC growth factors. Co-culture conditioned medium increased SMC proliferation, compared to medium conditioned by HAECs alone. HAECs exposed to allogeneic lymphocytes increased their expression of mRNA for basic fibroblast growth factor, transforming growth factors alpha and beta, and platelet derived growth factor A and B chains. These results demonstrate that allogeneic lymphocytes are capable of inducing HAECs to increase mRNA levels for several mesenchymal growth factors and to release bioactive products capable of stimulating SMC cell proliferation in vitro. Additionally, the data support the hypothesis that alloreactive lymphocytes can stimulate allogeneic donor endothelial cells to produce growth factors that may contribute to the intimal thickening seen in cardiac allograft vasculopathy.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1269
page 1269
icon of scanned page 1270
page 1270
icon of scanned page 1271
page 1271
icon of scanned page 1272
page 1272
icon of scanned page 1273
page 1273
icon of scanned page 1274
page 1274
icon of scanned page 1275
page 1275
icon of scanned page 1276
page 1276
icon of scanned page 1277
page 1277
Version history
  • Version 1 (September 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts