Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116624

Electrical properties of the rabbit cortical collecting duct from obstructed and contralateral kidneys after unilateral ureteral obstruction.

S Muto, Y Miyata, and Y Asano

Department of Nephrology, Jichi Medical School, Tochigi, Japan.

Find articles by Muto, S. in: PubMed | Google Scholar

Department of Nephrology, Jichi Medical School, Tochigi, Japan.

Find articles by Miyata, Y. in: PubMed | Google Scholar

Department of Nephrology, Jichi Medical School, Tochigi, Japan.

Find articles by Asano, Y. in: PubMed | Google Scholar

Published August 1, 1993 - More info

Published in Volume 92, Issue 2 on August 1, 1993
J Clin Invest. 1993;92(2):571–581. https://doi.org/10.1172/JCI116624.
© 1993 The American Society for Clinical Investigation
Published August 1, 1993 - Version history
View PDF
Abstract

Electrophysiological techniques were used to determine the electrical properties of the collecting duct (CD) cell in the isolated cortical collecting duct from obstructed (UUOOK) and contralateral (UUOCK) kidneys in rabbits 24 h after unilateral ureteral obstruction (UUO); results were compared with those from sham-operated kidneys. The lumen-negative transepithelial voltage and the basolateral membrane voltage (VB) were decreased in the UUOOK, and increased in the UUOCK. The transepithelial conductance (GT) was decreased in parallel with an increase in the fractional apical membrane resistance (fRA) and a decrease in apical membrane conductance in the UUOOK. By contrast, the GT was increased in parallel with increases in apical and basolateral membrane conductances in the UUOCK. The amiloride-sensitive changes in apical membrane voltage (VA), GT and fRA were lower in the UUOOK, but greater in the UUOCK. The changes in VA and GT upon raising the perfusate K+ concentration and upon addition of luminal Ba2+ were decreased in the UUOOK, and increased in the UUOCK. Addition of ouabain to the bath resulted in a smaller depolarization of VB in the UUOOK, but in a greater depolarization in the UUOCK. Upon lowering bath Cl-, the change in basolateral membrane electromotive force (delta EMF) was increased in the UUOOK, and decreased in the UUOCK. Reversely, upon raising bath K+, the delta EMF was decreased in the UUOOK, and increased in the UUOCK. We conclude: (a) the conductances of Na+ and K+ in the apical membrane, and active Na(+)-K+ pump activity and relative K+ conductance in the basolateral membrane are decreased in the UUOOK, and increased in the UUOCK; (b) the relative basolateral membrane Cl- conductance was increased in the UUOOK, and decreased in the UUOCK.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 571
page 571
icon of scanned page 572
page 572
icon of scanned page 573
page 573
icon of scanned page 574
page 574
icon of scanned page 575
page 575
icon of scanned page 576
page 576
icon of scanned page 577
page 577
icon of scanned page 578
page 578
icon of scanned page 579
page 579
icon of scanned page 580
page 580
icon of scanned page 581
page 581
Version history
  • Version 1 (August 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts