Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia.
S Kourembanas, … , G K Leung, D V Faller
S Kourembanas, … , G K Leung, D V Faller
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):99-104. https://doi.org/10.1172/JCI116604.
View: Text | PDF
Research Article

Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia.

  • Text
  • PDF
Abstract

The mechanisms by which hypoxia causes vasoconstriction in vivo are not known. Accumulating evidence implicates the endothelium as a key regulator of vascular tone. Hypoxia induces the expression and secretion of endothelin-1 (ET-1), a potent vasoconstrictor in cultured human endothelial cells. We report here that nitric oxide (NO), an endothelial-derived relaxing factor, modifies this induction of ET-1. Whereas low oxygen tension (PO2 = 20-30 Torr) increases ET-1 expression four- to eightfold above that seen at normal oxygen tension (PO2 = 150 Torr), sodium nitroprusside, which releases NO, suppresses this effect. This inhibition of hypoxia-induced ET-1 expression occurs within the first hour of exposure of cells to sodium nitroprusside. Moreover, when the endogenous constitutive levels of NO made by endothelial cells are suppressed using N-omega-nitro-L-arginine, a potent competitive inhibitor of NO synthase, the baseline levels of ET-1 produced in normoxic environments are increased three- to fourfold. The effects of hypoxia and the NO synthase inhibitor on ET-1 expression are additive. The regulation of ET-1 production by NO appears to be at the level of transcription. Similar effects of NO were observed on the expression of the PDGF-B chain gene. PDGF-B expression was suppressed by NO in a hypoxic environment and induced by N-omega-nitro-L-arginine in both normoxic and hypoxic environments. These findings suggest that in addition to its role as a vasodilator, NO may also influence vascular tone via the regulated reciprocal production of ET-1 and PDGF-B in the vasculature.

Authors

S Kourembanas, L P McQuillan, G K Leung, D V Faller

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts