Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Induction of vascular endothelial tubular morphogenesis by human glioma cells. A model system for tumor angiogenesis.
T Abe, … , S Hori, M Kuwano
T Abe, … , S Hori, M Kuwano
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):54-61. https://doi.org/10.1172/JCI116599.
View: Text | PDF
Research Article

Induction of vascular endothelial tubular morphogenesis by human glioma cells. A model system for tumor angiogenesis.

  • Text
  • PDF
Abstract

We have developed two different models of tumor angiogenesis by human brain tumors: one being tube formation by bovine aortic endothelial (BAE) cells cocultured with tumor cells in vitro, and other being in vivo angiogenesis in mice when tumor cells are transplanted into the dorsal sac. We investigated whether tube formation could be induced in BAE cells in type I collagen gel when these cells were cocultured with seven human glioma cell lines. Four of the seven glioma cell lines, which had high levels of basic fibroblast growth factor (bFGF) mRNA, induced tube formation by BAE cells. The tube formation was blocked by coadministration of anti-bFGF antibody. In in vivo model system of tumor angiogenesis in mice, these four cell lines were highly angiogenic. In contrast, with the other three glioma cell lines, which had poor expression of bFGF, BAE cells showed no apparent tube formation. These three cell lines did not efficiently develop capillary networks in mice. The results demonstrated a correlative relationship in the tubulogenesis of BAE cells, bFGF mRNA levels and angiogenesis in mice. The present study with two model systems of tumor angiogenesis suggests that the angiogenesis of some human glioma cell lines is mediated by bFGF, possibly via paracrine control.

Authors

T Abe, K Okamura, M Ono, K Kohno, T Mori, S Hori, M Kuwano

×

Full Text PDF

Download PDF (3.05 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts