Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The 55-kD tumor necrosis factor receptor on human keratinocytes is regulated by tumor necrosis factor-alpha and by ultraviolet B radiation.
U Trefzer, … , E Schöpf, T A Luger
U Trefzer, … , E Schöpf, T A Luger
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):462-470. https://doi.org/10.1172/JCI116589.
View: Text | PDF
Research Article

The 55-kD tumor necrosis factor receptor on human keratinocytes is regulated by tumor necrosis factor-alpha and by ultraviolet B radiation.

  • Text
  • PDF
Abstract

In previous studies we showed that cultured human keratinocytes expressed the 55-kD TNF receptor (TNFR) and that its expression the important for TNF alpha-mediated upregulation of intercellular adhesion molecule-1 (ICAM-1) expression on keratinocytes. Because factors that either reduce or enhance TNFR expression are likely to have a major impact on the biological effects of TNF alpha on keratinocytes, these studies were conducted to determine the factors that regulate its expression on keratinocytes. Using reverse transcriptase polymerase chain reaction, human keratinocytes were shown to lack 75-kD TNFR expression, indicating that TNF responsiveness of human keratinocytes critically depended on regulation of 55-kD TNFR expression. Human keratinocyte 55-kD TNFR surface and mRNA expression was found to be regulated in vitro by recombinant human (rh) TNF alpha. Stimulation of keratinocytes with rhTNF alpha initially decreased, but later increased, 55-kD TNFR surface expression. This biphasic modulation of 55-kD TNFR surface expression was associated with concomitant changes in 55-kD TNFR mRNA expression. Ultraviolet B (UVB) radiation, a well-known inducer of synthesis and secretion of TNF alpha by human keratinocytes, was found to mimic TNF alpha-induced modulation of 55-kD TNFR surface and mRNA expression via a TNF alpha-mediated autocrine regulatory mechanism. Production of soluble 55-kD TNFR by human keratinocytes remained unaffected by TNF alpha stimulation or UVB irradiation. These studies provide clear evidence that membrane expression of the human 55-kD TNFR may be regulated in human keratinocytes by the ligand itself: TNF alpha. Since in previous studies UVB irradiation transiently inhibited TNF alpha-induced human keratinocyte ICAM-1 expression, it is proposed that UVB radiation-induced biphasic modulation of human keratinocyte 55-kD TNFR expression may affect the capacity of these cells to respond to TNF alpha.

Authors

U Trefzer, M Brockhaus, H Lötscher, F Parlow, A Budnik, M Grewe, H Christoph, A Kapp, E Schöpf, T A Luger

×

Full Text PDF | Download (1.84 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts