Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis.
M Eddleston, … , T S Edgington, N Mackman
M Eddleston, … , T S Edgington, N Mackman
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):349-358. https://doi.org/10.1172/JCI116573.
View: Text | PDF
Research Article

Astrocytes are the primary source of tissue factor in the murine central nervous system. A role for astrocytes in cerebral hemostasis.

  • Text
  • PDF
Abstract

Hemostasis in the brain is of paramount importance because bleeding into the neural parenchyma can result in paralysis, coma, and death. Consistent with this sensitivity to hemorrhage, the brain contains large amounts of tissue factor (TF), the major cellular initiator of the coagulation protease cascades. However, to date, the cellular source for TF in the central nervous system has not been identified. In this study, analysis of murine brain sections by in situ hybridization demonstrated high levels of TF mRNA in cells that expressed glial fibrillary acidic protein, a specific marker for astrocytes. Furthermore, primary mouse astrocyte cultures and astrocyte cell lines from mouse, rat, and human constitutively expressed TF mRNA and functional protein. These data indicated that astrocytes are the primary source of TF in the central nervous system. We propose that astrocytes forming the glia limitans around the neural vasculature and deep to the meninges are intimately involved in controlling hemorrhage in the brain. Finally, we observed an increase in TF mRNA expression in the brains of scrapie-infected mice. This modulation of TF expression in the absence of hemorrhage suggested that TF may function in processes other than hemostasis by altering protease generation in normal and diseased brain.

Authors

M Eddleston, J C de la Torre, M B Oldstone, D J Loskutoff, T S Edgington, N Mackman

×

Usage data is cumulative from August 2024 through August 2025.

Usage JCI PMC
Text version 349 20
PDF 69 24
Figure 0 4
Scanned page 467 4
Citation downloads 51 0
Totals 936 52
Total Views 988
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts