Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Immunologic recognition of a 25-amino acid repeat arrayed in tandem on a major antigen of Blastomyces dermatitidis.
B S Klein, … , L H Hogan, J M Jones
B S Klein, … , L H Hogan, J M Jones
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):330-337. https://doi.org/10.1172/JCI116571.
View: Text | PDF
Research Article

Immunologic recognition of a 25-amino acid repeat arrayed in tandem on a major antigen of Blastomyces dermatitidis.

  • Text
  • PDF
Abstract

A 120-kD glycoprotein antigen abundantly expressed on Blastomyces dermatitidis yeasts is a target of cellular and humoral immune responses in human infection. To investigate the antigen and immune response more carefully at the molecular level, we screened an expression library from B. dermatitidis to identify clones that encode this antigen, designated WI-1. A 942-bp cDNA was isolated by immunologic screening with polyclonal, rabbit anti-WI-1 antiserum. Northern hybridization analysis showed that the cDNA hybridized to yeast message approximately equal to 3.9 kb. DNA and deduced protein sequence analysis of the clone demonstrated a 25-amino acid repeat arrayed in tandem, present in 4.5 copies near the 5' end, and rich in predicted antigenic epitopes. Further analysis showed strong homology in these tandem repeats with invasin, an adhesin of Yersiniae. Cloned cDNA was used to express a 30-kD fusion protein strongly recognized in western blots by rabbit anti-WI-1 antiserum, and by sera from all 35 blastomycosis patients studied. The fusion protein product of subcloned cDNA encoding only the tandem repeat also was strongly recognized in western blots by sera from the 35 blastomycosis patients, but not by sera from 10 histoplasmosis and 5 coccidioidomycosis patients. An antigen-inhibition radioimmunoassay showed that the tandem repeat alone completely eliminated rabbit and human anti-WI-1 antibody binding to radiolabeled native WI-1. From these results, we conclude that the 25-amino acid repeat of WI-1 displays an immunodominant B cell epitope, and that the carboxyl-terminus of the molecule exhibits an architecture that may promote adhesion of Blastomyces yeasts to host cells or extracellular matrix proteins and ultimately provide a clearer picture of the molecular pathogenesis of blastomycosis.

Authors

B S Klein, L H Hogan, J M Jones

×

Full Text PDF | Download (2.34 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts