Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Detection of pancreatic islet 64,000 M(r) autoantigens in insulin-dependent diabetes distinct from glutamate decarboxylase.
M R Christie, … , B K Michelsen, T L Delovitch
M R Christie, … , B K Michelsen, T L Delovitch
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):240-248. https://doi.org/10.1172/JCI116556.
View: Text | PDF
Research Article

Detection of pancreatic islet 64,000 M(r) autoantigens in insulin-dependent diabetes distinct from glutamate decarboxylase.

  • Text
  • PDF
Abstract

Patients with insulin-dependent diabetes (IDDM) possess antibodies to islet proteins of M(r)-64,000. Potential autoantigens of this M(r) include glutamate decarboxylase (GAD) and 65 kD heat shock protein. We have detected two distinct antibody specificities in IDDM that bind 50,000 M(r) or 37,000/40,000 M(r) proteolytic fragments of 64,000 M(r) proteins. In this study, we investigated relationships of these proteolytic fragments to GAD and heat shock proteins. Polyclonal antibodies to GAD bound 50,000 M(r) fragments of islet antigen. Recombinant GAD65, but not GAD67, blocked binding to this antigen, suggesting that 50,000 M(r) fragments are derived from islet GAD65. In contrast, GAD antibodies did not recognize 37,000/40,000 M(r) fragments, and neither GAD isoforms blocked autoantibody binding to precursors of these fragments. The 37,000/40,000 M(r) fragments, but not the 50,000 M(r) fragments, were detected after trypsin treatment of immunoprecipitates from insulinoma cells that lacked expression of major GAD isoforms. Antibodies in IDDM did not bind native or trypsinized islet heat shock proteins. Thus, IDDM patients possess antibodies to GAD, but also distinct antibodies to a 64,000 M(r) protein that is not related to known GAD isoforms or heat shock proteins.

Authors

M R Christie, J A Hollands, T J Brown, B K Michelsen, T L Delovitch

×

Full Text PDF | Download (2.52 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts