Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy.
K P Anderson, … , R L Lux, S V Karwandee
K P Anderson, … , R L Lux, S V Karwandee
Published July 1, 1993
Citation Information: J Clin Invest. 1993;92(1):122-140. https://doi.org/10.1172/JCI116540.
View: Text | PDF
Research Article

Myocardial electrical propagation in patients with idiopathic dilated cardiomyopathy.

  • Text
  • PDF
Abstract

Myocardial propagation may contribute to fatal arrhythmias in patients with idiopathic dilated cardiomyopathy (IDC). We examined this property in 15 patients with IDC undergoing cardiac transplantation and in 14 control subjects. An 8 x 8 array with electrodes 2 mm apart was used to determine the electrical activation sequence over a small region of the left ventricular surface. Tissue from the area beneath the electrode array was examined in the patients with IDC. The patients with IDC could be divided into three groups. Group I (n = 7) had activation patterns and estimates of longitudinal (theta L = 0.84 +/- 0.09 m/s) and transverse (theta T = 0.23 +/- 0.05 m/s) conduction velocities that were no different from controls (theta L = 0.80 +/- 0.08 m/s, theta T = 0.23 +/- 0.03 m/s). Group II (n = 4) had fractionated electrograms and disturbed transverse conduction with normal longitudinal activation, features characteristic of nonuniform anisotropic properties. Two of the control patients also had this pattern. Group III (n = 4) had fractionated potentials and severely disturbed transverse and longitudinal propagation. The amount of myocardial fibrosis correlated with the severity of abnormal propagation. We conclude that (a) severe contractile dysfunction is not necessarily accompanied by changes in propagation, and (b) nonuniform anisotropic propagation is present in a large proportion of patients with IDC and could underlie ventricular arrhythmias in this disorder.

Authors

K P Anderson, R Walker, P Urie, P R Ershler, R L Lux, S V Karwandee

×

Full Text PDF | Download (4.11 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts