Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Citations to this article

Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome.
M Thurnher, … , S Rusconi, E G Berger
M Thurnher, … , S Rusconi, E G Berger
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):2103-2110. https://doi.org/10.1172/JCI116434.
View: Text | PDF
Research Article

Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome.

  • Text
  • PDF
Abstract

A human hematopoietic disorder designated as Tn syndrome or permanent mixed-field polyagglutinability has been ascribed to a stem cell mutation leading to a specific deficiency of UDP-Gal:GalNAc alpha 1-O-Ser/Thr beta 1-3 galactosyltransferase (beta 3 Gal-T) activity in affected cells. To test for the possibility that an allele of the beta 3Gal-T gene might be repressed instead of mutated, we have investigated whether 5-azacytidine or sodium n-butyrate, both inducers of gene expression, would reactivate expression of beta 3Gal-T in cloned enzyme-deficient T cells derived from a patient affected by the Tn syndrome. Flow cytometry revealed that a single treatment induced de novo expression of the Thomsen-Friedenreich antigen (Gal beta 1-3GalNAc-R), the product of beta 3Gal-T activity. In addition, a sialylated epitope on CD43 (leukosialin), which is present on normal but not on beta 3Gal-T-deficient T cells, was also reexpressed. Although no beta 3Gal-T activity was detectable in untreated Tn syndrome T cells, after exposure to 5-azaC,beta 3Gal-T activity reached nearly normal values. Both agents failed to reactivate beta 3Gal-T in Jurkat T leukemic cells, which also lack beta 3Gal-T activity. These data demonstrate that Tn syndrome T cells contain an intact beta 3Gal-T gene copy and that the enzyme deficiency in this patient is due to a persistent and complete but reversible repression of a functional allele. In contrast, the cause of beta 3Gal-T deficiency appears to be different in Jurkat T cells.

Authors

M Thurnher, S Rusconi, E G Berger

×

Loading citation information...
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts