Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116426

High stimulatory activity of dendritic cells from diabetes-prone BioBreeding/Worcester rats exposed to macrophage-derived factors.

A Tafuri, W E Bowers, E S Handler, M Appel, R Lew, D Greiner, J P Mordes, and A A Rossini

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Tafuri, A. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Bowers, W. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Handler, E. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Appel, M. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Lew, R. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Greiner, D. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Mordes, J. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Massachusetts Medical School, Worcester 01655.

Find articles by Rossini, A. in: JCI | PubMed | Google Scholar

Published May 1, 1993 - More info

Published in Volume 91, Issue 5 on May 1, 1993
J Clin Invest. 1993;91(5):2040–2048. https://doi.org/10.1172/JCI116426.
© 1993 The American Society for Clinical Investigation
Published May 1, 1993 - Version history
View PDF
Abstract

Dendritic cells (DC) present antigen and initiate T cell-mediated immune responses. To investigate the possible association of autoimmunity with DC function, we compared the accessory activity of splenic DC from Wistar/Furth (WF) and diabetes-prone (DP) BioBreeding (BB) rats. The latter develop autoimmune diabetes and thyroiditis. DC function was quantified in vitro by measuring T cell proliferation in mitogen-stimulated and mixed lymphocyte reactions. When purified without macrophage coculture, WF and DP DC displayed similar levels of accessory activity. In contrast, when purified by a method involving coculture with macrophages, DC from DP rats consistently displayed greater accessory activity. This finding could not be explained by morphological or phenotypic differences between DP and WF DC. In accessory activity assays performed after reciprocal DC cocultures with DP and WF macrophages, DP DC exhibited higher accessory activity irrespective of macrophage donor strain. We also compared the accessory activity of WF and DP DC cultured in the presence of conditioned medium and a mixture of IL-1 and GM-CSF. In all assays, DP DC exhibited higher accessory activity. In studies of (WF x DP) F1 hybrids, the high accessory activity of DP DC was observed to be heritable, and studies of WF and DP radiation chimeras indicated that the effect was an intrinsic property of the DP hematopoietic system. We conclude: (a) splenic DC from DP and WF rats possess similar basal levels of accessory potency; (b) after interaction with macrophages, DC of DP origin are capable of greater stimulatory activity than are WF DC; and (c) the mechanism responsible for this phenomenon involves differential responsiveness of DP and WF DC to macrophage-derived factors such as IL-1 and GM-CSF.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2040
page 2040
icon of scanned page 2041
page 2041
icon of scanned page 2042
page 2042
icon of scanned page 2043
page 2043
icon of scanned page 2044
page 2044
icon of scanned page 2045
page 2045
icon of scanned page 2046
page 2046
icon of scanned page 2047
page 2047
icon of scanned page 2048
page 2048
Version history
  • Version 1 (May 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts