Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116422

Bisphosphonates act on rat bone resorption through the mediation of osteoblasts.

M Sahni, H L Guenther, H Fleisch, P Collin, and T J Martin

Department of Pathophysiology, University of Berne, Switzerland.

Find articles by Sahni, M. in: PubMed | Google Scholar

Department of Pathophysiology, University of Berne, Switzerland.

Find articles by Guenther, H. in: PubMed | Google Scholar

Department of Pathophysiology, University of Berne, Switzerland.

Find articles by Fleisch, H. in: PubMed | Google Scholar

Department of Pathophysiology, University of Berne, Switzerland.

Find articles by Collin, P. in: PubMed | Google Scholar

Department of Pathophysiology, University of Berne, Switzerland.

Find articles by Martin, T. in: PubMed | Google Scholar

Published May 1, 1993 - More info

Published in Volume 91, Issue 5 on May 1, 1993
J Clin Invest. 1993;91(5):2004–2011. https://doi.org/10.1172/JCI116422.
© 1993 The American Society for Clinical Investigation
Published May 1, 1993 - Version history
View PDF
Abstract

Bisphosphonates are generally considered to act on bone resorption by binding to bone mineral and subsequently inhibiting the activity of the osteoclasts which ingest them. This has been supported by the fact that bisphosphonates adsorbed on mineralized tissue inhibit the resorbing activity of isolated osteoclasts in vitro. However, the effectiveness of different bisphosphonates determined in this system does not reflect their relative potencies in vivo. Employing the well-described isolated osteoclast resorption pit assay, with ivory as the resorption substrate, we show here that this lack of correlation prevails only when the bisphosphonates are added to the mineral before addition of osteoclasts, but not when the cells are treated for a short time (5 min) before allowing them to adhere onto ivory. By using this approach with five different bisphosphonates, a stringent correlation of relative potencies was obtained with those found, both in the rat and in the human, in vivo. Furthermore, by using an osteoblastic cell line (CRP 10/30) which is a powerful promoter of osteoclastic resorption in vitro, we obtained evidence that the inhibitory effect of bisphosphonates was the result of an action on osteoblasts rather than on osteoclasts. Thus, in experiments in which the osteoblastic cells were pretreated for 5 min with bisphosphonates and then cocultured with osteoclasts, inhibition of osteoclastic resorbing activity was obtained. Moreover, it was found that this treatment resulted in a decrease of the stimulatory effect found in CRP 10/30-conditioned medium. In conclusion the present study shows that part of the osteoclast inhibiting action of the bisphosphonates is mediated through an action on osteoblasts.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2004
page 2004
icon of scanned page 2005
page 2005
icon of scanned page 2006
page 2006
icon of scanned page 2007
page 2007
icon of scanned page 2008
page 2008
icon of scanned page 2009
page 2009
icon of scanned page 2010
page 2010
icon of scanned page 2011
page 2011
Version history
  • Version 1 (May 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts