Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116411

Plasma triglycerides determine low density lipoprotein composition, physical properties, and cell-specific binding in cultured cells.

B J McKeone, J R Patsch, and H J Pownall

Department of Internal Medicine, Baylor College of Medicine, Houston, Texas.

Find articles by McKeone, B. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Baylor College of Medicine, Houston, Texas.

Find articles by Patsch, J. in: JCI | PubMed | Google Scholar

Department of Internal Medicine, Baylor College of Medicine, Houston, Texas.

Find articles by Pownall, H. in: JCI | PubMed | Google Scholar

Published May 1, 1993 - More info

Published in Volume 91, Issue 5 on May 1, 1993
J Clin Invest. 1993;91(5):1926–1933. https://doi.org/10.1172/JCI116411.
© 1993 The American Society for Clinical Investigation
Published May 1, 1993 - Version history
View PDF
Abstract

The relationship between the plasma triglycerides and the LDL triglycerides of 30 normal and 48 hypertriglyceridemic subjects has been quantified; the data fit a simple adsorption isotherm, LDL triglyceride/(LDL triglyceride+LDL cholesterol ester) = 0.65 plasma triglyceride/(464 + plasma triglyceride). In vitro transfer of triglyceride from concentrated VLDL to VLDL-depleted plasma produced triglyceride-rich LDL that had similar properties. LDL uptake by HepG2 cells increased with LDL triglyceride content whereas the reverse was found with skin fibroblasts. At 37 degrees C, the cores of both normal and hypertriglyceridemic LDL were isotropic liquids. Circular dichroic spectra revealed no difference in the secondary structure of normal and triglyceride-rich LDL. The affinity of monoclonal antibody MB47, which binds to the receptor ligand of apo B-100 was independent of LDL triglyceride content. MB3, which binds near residue 1022 of apo B-100, showed a triglyceride-dependent decrease in affinity for LDL from hypertriglyceridemic subjects and from in vitro incubations. LDL with an elevated triglyceride content formed in vitro had reduced proteolytic cleavage of apo B-100 by Staphylococcus aureus V8 protease. From these data, we infer that (a) LDL triglyceride is a predictable function of plasma triglyceride, (b) triglyceride induces subtle changes in apo B-100 structure at a site that is remote from the putative receptor binding ligand, and (c) the triglyceride-dependent receptor-binding determinants of apo B-100 are recognized differently by fibroblasts and HepG2 cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1926
page 1926
icon of scanned page 1927
page 1927
icon of scanned page 1928
page 1928
icon of scanned page 1929
page 1929
icon of scanned page 1930
page 1930
icon of scanned page 1931
page 1931
icon of scanned page 1932
page 1932
icon of scanned page 1933
page 1933
Version history
  • Version 1 (May 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts