Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Tumor necrosis factor-alpha modifies adhesion properties of rat islet B cells.
V Cirulli, … , P A Halban, D G Rouiller
V Cirulli, … , P A Halban, D G Rouiller
Published May 1, 1993
Citation Information: J Clin Invest. 1993;91(5):1868-1876. https://doi.org/10.1172/JCI116403.
View: Text | PDF
Research Article

Tumor necrosis factor-alpha modifies adhesion properties of rat islet B cells.

  • Text
  • PDF
Abstract

The characteristic three-dimensional cell type organization of islets of Langerhans is perturbed in animal models of diabetes, suggesting that it may be important for islet function. Rat islet cells in culture are able to form aggregates with an architecture similar to native islets (pseudoislets), thus providing a good model to study the molecular basis of islet architecture and its role in islet function. Sorted islet B cells and non-B cells were permanently labeled with two different fluorescent dyes (DiO and DiI), mixed, and allowed to form aggregates during a 5-d culture in the presence or absence of TNF-alpha (100 U/ml), a cytokine suggested to be implicated in the early physiological events leading to insulin-dependent diabetes mellitus. Confocal microscopy of aggregates revealed that TNF-alpha reversibly perturbs the typical segregation between B and non-B cells. Insulin secretion, was altered in the disorganized aggregates, and returned towards normal when pseudoislets had regained their typical architecture. The homotypic adhesion properties of sorted B and non-B cells cultured for 20 h in the presence or absence of TNF-alpha were studied in a short term aggregation assay. TNF-alpha induced a significant rise in Ca(2+)-independent adhesion of B cells (from 24 +/- 1.1% to 44.3 +/- 1.2%; n = 4, P < 0.001). These findings raise the possibility that the increased expression of Ca(2+)-independent adhesion molecules on B cells leads to altered islet architecture, which might be a factor in the perturbation of islet function induced by TNF-alpha.

Authors

V Cirulli, P A Halban, D G Rouiller

×

Full Text PDF

Download PDF (2.59 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts