Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116392

Anatomical and developmental patterns of facilitative glucose transporter gene expression in the rat kidney.

E Chin, J Zhou, and C Bondy

Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Chin, E. in: PubMed | Google Scholar

Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Zhou, J. in: PubMed | Google Scholar

Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892.

Find articles by Bondy, C. in: PubMed | Google Scholar

Published April 1, 1993 - More info

Published in Volume 91, Issue 4 on April 1, 1993
J Clin Invest. 1993;91(4):1810–1815. https://doi.org/10.1172/JCI116392.
© 1993 The American Society for Clinical Investigation
Published April 1, 1993 - Version history
View PDF
Abstract

In situ hybridization was used to map cellular patterns of gene expression for facilitative glucose transporters (GTs) 1-5 in the developing and adult rat kidney. GT3 was not detected. GT1 mRNA was present in the proximal straight tubule (PST), distal nephron and collecting duct. GT2 mRNA was localized in both proximal convoluted and PST, while GT5 mRNA was detected only in the PST. GT4 mRNA and immunoreactivity were focally localized in the thick ascending limb of Henle's loop and were coexpressed with IGF-I. Thus, each of the four different isoforms demonstrated a distinct renal distribution, with GTs 1, 2, and 5 coexpressed in the PST. Renal GT1 and GT5 gene expression were unchanged throughout development, while GT2 was most abundant before weaning and GT4 was first detected after weaning. Only GT4 appeared to be hormonally regulated: It was decreased after hypophysectomy and increased after vasopressin treatment, but was not affected by 1 or 4 d of insulinopenic diabetes mellitus. The coexpression of GT4 and IGF-I in the thick ascending limb segment of the nephron suggests a novel autocrine/paracrine mechanism by which cells may control local fuel economy independently from that of the larger structure to which they belong and from the systemic hormonal milieu.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1810
page 1810
icon of scanned page 1811
page 1811
icon of scanned page 1812
page 1812
icon of scanned page 1813
page 1813
icon of scanned page 1814
page 1814
icon of scanned page 1815
page 1815
Version history
  • Version 1 (April 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts