Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116385

Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland.

R Donghi, A Longoni, S Pilotti, P Michieli, G Della Porta, and M A Pierotti

Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

Find articles by Donghi, R. in: JCI | PubMed | Google Scholar

Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

Find articles by Longoni, A. in: JCI | PubMed | Google Scholar

Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

Find articles by Pilotti, S. in: JCI | PubMed | Google Scholar

Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

Find articles by Michieli, P. in: JCI | PubMed | Google Scholar

Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

Find articles by Della Porta, G. in: JCI | PubMed | Google Scholar

Divisione di Oncologia Sperimentale A, Istituto Nazionale Tumori, Milan, Italy.

Find articles by Pierotti, M. in: JCI | PubMed | Google Scholar

Published April 1, 1993 - More info

Published in Volume 91, Issue 4 on April 1, 1993
J Clin Invest. 1993;91(4):1753–1760. https://doi.org/10.1172/JCI116385.
© 1993 The American Society for Clinical Investigation
Published April 1, 1993 - Version history
View PDF
Abstract

The p53 gene was analyzed in tumor specimens obtained from 52 patients with various types of carcinoma of the thyroid gland by a combined molecular and immunocytochemical approach. The histologic types included 37 well-differentiated papillary and follicular carcinomas, 8 poorly differentiated, and 7 undifferentiated carcinomas. The p53 gene was shown to be unaffected in all differentiated tumors by single-strand conformation polymorphism analysis. However, in two out of eight (25%) of poorly differentiated carcinomas and five out of seven (71%) undifferentiated carcinomas, p53 mutations were identified and subsequently characterized by DNA sequencing. One undifferentiated carcinoma displayed two areas with varying degrees of differentiation. The comparative analysis of the p53 gene, in both the more and the less differentiated area of this tumor, clearly showed that the p53 mutation was confined to the latter component of the tumor specimen. These results indicate that mutations of the p53 gene are associated with the most aggressive histologic types of thyroid tumors, such as the undifferentiated carcinoma and, to a certain extent, the poorly differentiated carcinoma, and that the alterations of this gene represent a late genetic event in human thyroid carcinogenesis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1753
page 1753
icon of scanned page 1754
page 1754
icon of scanned page 1755
page 1755
icon of scanned page 1756
page 1756
icon of scanned page 1757
page 1757
icon of scanned page 1758
page 1758
icon of scanned page 1759
page 1759
icon of scanned page 1760
page 1760
Version history
  • Version 1 (April 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts