Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116308

Mechanisms by which glucose can control insulin release independently from its action on adenosine triphosphate-sensitive K+ channels in mouse B cells.

M Gembal, P Detimary, P Gilon, Z Y Gao, and J C Henquin

Unité de Diabétologie et Nutrition, Faculty of Medicine, University of Louvain, Brussels, Belgium.

Find articles by Gembal, M. in: PubMed | Google Scholar

Unité de Diabétologie et Nutrition, Faculty of Medicine, University of Louvain, Brussels, Belgium.

Find articles by Detimary, P. in: PubMed | Google Scholar

Unité de Diabétologie et Nutrition, Faculty of Medicine, University of Louvain, Brussels, Belgium.

Find articles by Gilon, P. in: PubMed | Google Scholar

Unité de Diabétologie et Nutrition, Faculty of Medicine, University of Louvain, Brussels, Belgium.

Find articles by Gao, Z. in: PubMed | Google Scholar

Unité de Diabétologie et Nutrition, Faculty of Medicine, University of Louvain, Brussels, Belgium.

Find articles by Henquin, J. in: PubMed | Google Scholar

Published March 1, 1993 - More info

Published in Volume 91, Issue 3 on March 1, 1993
J Clin Invest. 1993;91(3):871–880. https://doi.org/10.1172/JCI116308.
© 1993 The American Society for Clinical Investigation
Published March 1, 1993 - Version history
View PDF
Abstract

Glucose stimulation of insulin release involves closure of ATP-sensitive K+ channels (K(+)-ATP channels), depolarization, and Ca2+ influx in B cells. However, by using diazoxide to open K(+)-ATP channels, and 30 mM K to depolarize the membrane, we could demonstrate that another mechanism exists, by which glucose can control insulin release independently from changes in K(+)-ATP channel activity and in membrane potential (Gembal et al. 1992. J. Clin. Invest. 89:1288-1295). A similar approach was followed here to investigate, with mouse islets, the nature of this newly identified mechanism. The membrane potential-independent increase in insulin release produced by glucose required metabolism of the sugar and was mimicked by other metabolized secretagogues. It also required elevated levels of cytoplasmic Cai2+, but was not due to further changes in Cai2+. It could not be ascribed to acceleration of phosphoinositide metabolism, or to activation of protein kinases A or C. Thus, glucose did not increase inositol phosphate levels and hardly affected cAMP levels. Moreover, increasing inositol phosphates by vasopressin or cAMP by forskolin, and activating protein kinase C by phorbol esters did not mimic the action of glucose on release, and down-regulation of protein kinase C did not prevent these effects. On the other hand, it correlated with an increase in the ATP/ADP ratio in islet cells. We suggest that the membrane potential-independent control of insulin release exerted by glucose involves changes in the energy state of B cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 871
page 871
icon of scanned page 872
page 872
icon of scanned page 873
page 873
icon of scanned page 874
page 874
icon of scanned page 875
page 875
icon of scanned page 876
page 876
icon of scanned page 877
page 877
icon of scanned page 878
page 878
icon of scanned page 879
page 879
icon of scanned page 880
page 880
Version history
  • Version 1 (March 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts