Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116279

Expression of int-2 oncogene in Kaposi's sarcoma lesions.

Y Q Huang, J J Li, D Moscatelli, C Basilico, A Nicolaides, W G Zhang, B J Poiesz, and A E Friedman-Kien

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Huang, Y. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Li, J. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Moscatelli, D. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Basilico, C. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Nicolaides, A. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Zhang, W. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Poiesz, B. in: PubMed | Google Scholar

Department of Microbiology, New York University Medical Center, New York 10016.

Find articles by Friedman-Kien, A. in: PubMed | Google Scholar

Published March 1, 1993 - More info

Published in Volume 91, Issue 3 on March 1, 1993
J Clin Invest. 1993;91(3):1191–1197. https://doi.org/10.1172/JCI116279.
© 1993 The American Society for Clinical Investigation
Published March 1, 1993 - Version history
View PDF
Abstract

Fibroblast growth factors (FGFs), such as basic FGF, have been implicated in the growth of Kaposi's sarcoma (KS) cells in vitro. In the evaluation of the expression of the various genes of the different members of the FGF family and their receptors in fresh KS tissue specimens, int-2 was found to be expressed in more than half of the KS tumors examined. Using reverse transcription PCR, the expression of int-2 was detected in 21 of 38 (55.2%) fresh KS biopsy specimens. In contrast, int-2 mRNA transcripts were not found in normal appearing skin from the same patients except in one sample which was obtained from an AIDS patient with disseminated KS lesions. Sequence data confirmed that the amplified sequences were derived from int-2 mRNA with proper splicing. In addition, 12 nucleic acid alterations were identified in eight out of nine KS tumor samples sequenced. Using immunohistochemical methods, int-2 protein was detected in some of the spindle-shaped tumor cells surrounding the abnormal endothelial-lined vascular slits histologically characteristic of KS. Int-2 specific immunostaining was shown to be present in both the nuclei and cytoplasm of these spindle cells but was more pronounced in the nuclei. Neither amplification nor gross rearrangement of the int-2 gene was detected in KS lesions by Southern blot analysis. These results suggest that the expression of int-2 may play a role in the pathogenesis KS by stimulating local angiogenesis and cell proliferation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1191
page 1191
icon of scanned page 1192
page 1192
icon of scanned page 1193
page 1193
icon of scanned page 1194
page 1194
icon of scanned page 1195
page 1195
icon of scanned page 1196
page 1196
icon of scanned page 1197
page 1197
Version history
  • Version 1 (March 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts