Iron-dependent free radical reactions and renal ischemia are believed to be critical mediators of myohemoglobinuric acute renal failure. Thus, this study assessed whether catalytic iron exacerbates O2 deprivation-induced proximal tubular injury, thereby providing an insight into this form of renal failure. Isolated rat proximal tubular segments (PTS) were subjected to either hypoxia/reoxygenation (H/R: 27:15 min), "chemical anoxia" (antimycin A; 7.5 microM x 45 min), or continuous oxygenated incubation +/- ferrous (Fe2+) or ferric (Fe3+) iron addition. Cell injury (% lactic dehydrogenase [LDH] release), lipid peroxidation (malondialdehyde, [MDA]), and ATP depletion were assessed. Under oxygenated conditions, Fe2+ and Fe3+ each raised MDA (approximately 7-10x) and decreased ATP (approximately 25%). Fe2+, but not Fe3+, caused LDH release (31 +/- 2%). During hypoxia, Fe2+ and Fe3+ worsened ATP depletion; however, each decreased LDH release (approximately 31 to approximately 22%; P < 0.01). Fe(2+)-mediated protection was negated during reoxygenation because Fe2+ exerted its intrinsic cytotoxic effect (LDH release: Fe2+ alone, 31 +/- 2%; H/R 36 +/- 2%; H/R + Fe2+, 41 +/- 2%). However, Fe(3+)-mediated protection persisted throughout reoxygenation because it induced no direct cytotoxicity (H/R, 39 +/- 2%; H/R + Fe3+, 25 +/- 2%; P < 0.002). Fe3+ also decreased antimycin toxicity (41 +/- 4 vs. 25 +/- 3%; P < 0.001) despite inducing marked lipid peroxidation and without affecting ATP. These results indicate that catalytic iron can mitigate, rather than exacerbate, O2 deprivation/reoxygenation PTS injury.
R A Zager, B A Schimpf, C R Bredl, D J Gmur
Usage data is cumulative from August 2024 through August 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 147 | 6 |
80 | 10 | |
Scanned page | 299 | 0 |
Citation downloads | 54 | 0 |
Totals | 580 | 16 |
Total Views | 596 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.