Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Citations to this article

Inorganic iron effects on in vitro hypoxic proximal renal tubular cell injury.
R A Zager, … , C R Bredl, D J Gmur
R A Zager, … , C R Bredl, D J Gmur
Published February 1, 1993
Citation Information: J Clin Invest. 1993;91(2):702-708. https://doi.org/10.1172/JCI116251.
View: Text | PDF
Research Article

Inorganic iron effects on in vitro hypoxic proximal renal tubular cell injury.

  • Text
  • PDF
Abstract

Iron-dependent free radical reactions and renal ischemia are believed to be critical mediators of myohemoglobinuric acute renal failure. Thus, this study assessed whether catalytic iron exacerbates O2 deprivation-induced proximal tubular injury, thereby providing an insight into this form of renal failure. Isolated rat proximal tubular segments (PTS) were subjected to either hypoxia/reoxygenation (H/R: 27:15 min), "chemical anoxia" (antimycin A; 7.5 microM x 45 min), or continuous oxygenated incubation +/- ferrous (Fe2+) or ferric (Fe3+) iron addition. Cell injury (% lactic dehydrogenase [LDH] release), lipid peroxidation (malondialdehyde, [MDA]), and ATP depletion were assessed. Under oxygenated conditions, Fe2+ and Fe3+ each raised MDA (approximately 7-10x) and decreased ATP (approximately 25%). Fe2+, but not Fe3+, caused LDH release (31 +/- 2%). During hypoxia, Fe2+ and Fe3+ worsened ATP depletion; however, each decreased LDH release (approximately 31 to approximately 22%; P < 0.01). Fe(2+)-mediated protection was negated during reoxygenation because Fe2+ exerted its intrinsic cytotoxic effect (LDH release: Fe2+ alone, 31 +/- 2%; H/R 36 +/- 2%; H/R + Fe2+, 41 +/- 2%). However, Fe(3+)-mediated protection persisted throughout reoxygenation because it induced no direct cytotoxicity (H/R, 39 +/- 2%; H/R + Fe3+, 25 +/- 2%; P < 0.002). Fe3+ also decreased antimycin toxicity (41 +/- 4 vs. 25 +/- 3%; P < 0.001) despite inducing marked lipid peroxidation and without affecting ATP. These results indicate that catalytic iron can mitigate, rather than exacerbate, O2 deprivation/reoxygenation PTS injury.

Authors

R A Zager, B A Schimpf, C R Bredl, D J Gmur

×

Loading citation information...
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts