Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116199

Direct evidence for the absence of active Na+ reabsorption in hamster ascending thin limb of Henle's loop.

Y Kondo, K Abe, Y Igarashi, K Kudo, K Tada, and K Yoshinaga

Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

Find articles by Kondo, Y. in: PubMed | Google Scholar

Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

Find articles by Abe, K. in: PubMed | Google Scholar

Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

Find articles by Igarashi, Y. in: PubMed | Google Scholar

Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

Find articles by Kudo, K. in: PubMed | Google Scholar

Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

Find articles by Tada, K. in: PubMed | Google Scholar

Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan.

Find articles by Yoshinaga, K. in: PubMed | Google Scholar

Published January 1, 1993 - More info

Published in Volume 91, Issue 1 on January 1, 1993
J Clin Invest. 1993;91(1):5–11. https://doi.org/10.1172/JCI116199.
© 1993 The American Society for Clinical Investigation
Published January 1, 1993 - Version history
View PDF
Abstract

The mechanisms of Na+ transport across cell membranes were investigated in the in vitro microperfused hamster ascending thin limb (ATL) of Henle's loop using a fluorescent Na+ indicator sodium-binding benzofuran isophthalate. The intracellular Na+ concentration ([Na+]i) of the ATL cells was 17.1 +/- 1.7 mM (n = 22) when the ATL was microperfused in vitro with Hepes-buffered solution containing 204 mM Na+. Elimination of metabolites such as glucose and alanine from the basolateral solution increased [Na+]i. Applying either 5 mM cyanide or 5 mM iodoacetic acid to the bath also increased [Na+]i. The elimination of K+ and the addition of 10(-4) M ouabain in the bath increased [Na+]i by 25.0 +/- 5.0 mM (n = 5) in 3 min and by 10.7 +/- 2.4 mM (n = 4), respectively. The elimination of luminal and basolateral Na+ resulted in a decrease in [Na+]i, indicating Na+ permeability of both the luminal and basolateral cell membranes. The luminal Na+ permeability was not affected by furosemide. The presence of luminal Na+ permeability and the basolateral Na+/K+ ATPase suggests the presence of net active reabsorption of Na+, which is not a physiologically important amount, in our estimation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 5
page 5
icon of scanned page 6
page 6
icon of scanned page 7
page 7
icon of scanned page 8
page 8
icon of scanned page 9
page 9
icon of scanned page 10
page 10
icon of scanned page 11
page 11
Version history
  • Version 1 (January 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts