Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116195

Quantitative assay using recombinant human islet glutamic acid decarboxylase (GAD65) shows that 64K autoantibody positivity at onset predicts diabetes type.

W A Hagopian, A E Karlsen, A Gottsäter, M Landin-Olsson, C E Grubin, G Sundkvist, J S Petersen, E Boel, T Dyrberg, and A Lernmark

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Hagopian, W. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Karlsen, A. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Gottsäter, A. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Landin-Olsson, M. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Grubin, C. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Sundkvist, G. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Petersen, J. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Boel, E. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Dyrberg, T. in: PubMed | Google Scholar

Department of Medicine, University of Washington, Seattle 98195.

Find articles by Lernmark, A. in: PubMed | Google Scholar

Published January 1, 1993 - More info

Published in Volume 91, Issue 1 on January 1, 1993
J Clin Invest. 1993;91(1):368–374. https://doi.org/10.1172/JCI116195.
© 1993 The American Society for Clinical Investigation
Published January 1, 1993 - Version history
View PDF
Abstract

At and before onset, most insulin-dependent diabetics (IDDM) have islet GAD65 autoantibodies (GAD65Ab). Since IDDM also occurs in older patients where non-insulin-dependent diabetes is common, we studied GAD65Ab at onset to classify diabetes type. Our quantitative immunoprecipitation assay uses recombinant human islet GAD65 stably expressed in hamster fibroblasts. Electrophoretic mobility was identical to native islet GAD65. Like native antigen, recombinant GAD65 migrated as two bands during electrophoresis, but converted to one under stronger reduction. Immunoprecipitation was linear with respect to antibody or antigen concentration. In 120 population-based diabetic patients of all ages grouped by treatment at onset and after 18 mo, GAD65Ab were present in 70% on insulin (n = 37), 10% on oral agent (n = 62, P < 0.0001), 69% changing from oral agent to insulin (n = 16, P < 0.001), and 1 of 33 controls. 65% with GAD65Ab, versus 8% without, changed from oral agent to insulin (P < 0.01). The GAD65Ab quantitative index was remarkably stable, and only 2 of 32 patients changed antibody status during follow-up. Concordance between GAD65Ab and islet cell antibodies was 93%. Quantitative correlation was approximate but significant. This highly sensitive, quantitative, high capacity assay for GAD65Ab reveals treatment requirements better than clinical criteria, perhaps guiding immunomodulatory therapy.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 368
page 368
icon of scanned page 369
page 369
icon of scanned page 370
page 370
icon of scanned page 371
page 371
icon of scanned page 372
page 372
icon of scanned page 373
page 373
icon of scanned page 374
page 374
Version history
  • Version 1 (January 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts