Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116188

Regulation of membrane chloride currents in rat bile duct epithelial cells.

J G Fitz, S Basavappa, J McGill, O Melhus, and J A Cohn

Duke University and Veterans Administration Medical Center, Durham, NC 27710.

Find articles by Fitz, J. in: PubMed | Google Scholar

Duke University and Veterans Administration Medical Center, Durham, NC 27710.

Find articles by Basavappa, S. in: PubMed | Google Scholar

Duke University and Veterans Administration Medical Center, Durham, NC 27710.

Find articles by McGill, J. in: PubMed | Google Scholar

Duke University and Veterans Administration Medical Center, Durham, NC 27710.

Find articles by Melhus, O. in: PubMed | Google Scholar

Duke University and Veterans Administration Medical Center, Durham, NC 27710.

Find articles by Cohn, J. in: PubMed | Google Scholar

Published January 1, 1993 - More info

Published in Volume 91, Issue 1 on January 1, 1993
J Clin Invest. 1993;91(1):319–328. https://doi.org/10.1172/JCI116188.
© 1993 The American Society for Clinical Investigation
Published January 1, 1993 - Version history
View PDF
Abstract

This study examines the conductive properties of the plasma membrane of cells isolated from the intrahepatic portion of bile ducts. Membrane Cl- conductance was measured in single cells using whole-cell patch clamp recording techniques and in cells in short-term culture using 36Cl and 125I efflux. Separate Ca(2+)- and cAMP-dependent Cl- currents were identified. Ca(2+)-dependent Cl- currents showed outward rectification of the current-voltage relation, time-dependent activation at depolarizing potentials, and reversal near the equilibrium potential for Cl-. Ionomycin (2 microM) increased this current from 357 +/- 72 pA to 1,192 +/- 414 pA (at +80 mV) in 5:7 cells, and stimulated efflux of 125I > 36Cl in 15:15 studies. Ionomycin-stimulated efflux was inhibited by the Cl- channel blocker 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) (150 microM). A separate cAMP-activated Cl- current showed linear current-voltage relations and no time dependence. Forskolin (10 microM) or cpt-cAMP (500 microM) increased this current from 189 +/- 50 pA to 784 +/- 196 pA (at +80 mV) in 11:16 cells, and stimulated efflux of 36Cl > 125I in 16:16 studies. cAMP-stimulated efflux was unaffected by DIDS. Because the cAMP-stimulated Cl- conductance resembles that associated with cystic fibrosis transmembrane conductance regulator (CFTR), a putative Cl- channel protein, the presence of CFTR in rat liver was examined by immunoblot analyses. CFTR was detected as a 150-165-kD protein in specimens with increased numbers of duct cells. Immunoperoxidase staining confirmed localization of CFTR to bile duct cells but not hepatocytes. These findings suggest that Ca(2+)- and cAMP-regulated Cl- channels may participate in control of fluid and electrolyte secretion by intrahepatic bile duct epithelial cells, and that the cAMP-regulated conductance is associated with endogenous expression of CFTR. Abnormal ductular secretion may contribute to the pathogenesis of cholestatic liver disease in cystic fibrosis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 319
page 319
icon of scanned page 320
page 320
icon of scanned page 321
page 321
icon of scanned page 322
page 322
icon of scanned page 323
page 323
icon of scanned page 324
page 324
icon of scanned page 325
page 325
icon of scanned page 326
page 326
icon of scanned page 327
page 327
icon of scanned page 328
page 328
Version history
  • Version 1 (January 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts