Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies.
J D Corbett, D E Golan
J D Corbett, D E Golan
Published January 1, 1993
Citation Information: J Clin Invest. 1993;91(1):208-217. https://doi.org/10.1172/JCI116172.
View: Text | PDF
Research Article

Band 3 and glycophorin are progressively aggregated in density-fractionated sickle and normal red blood cells. Evidence from rotational and lateral mobility studies.

  • Text
  • PDF
Abstract

Band 3 aggregation in the plane of the red blood cell (RBC) membrane is postulated to be important in the pathophysiology of hemolysis of dense sickle and normal RBCs. We used the fluorescence photobleaching recovery and polarized fluorescence depletion techniques to measure the lateral and rotational mobility of band 3, glycophorins, and phospholipid analogues in membranes of density-separated intact RBCs from seven patients with sickle cell disease and eight normal controls. The fractions of laterally mobile band 3 and glycophorin decreased progressively as sickle RBC density increased. Normal RBCs also showed a progressive decrease in band 3 fractional mobility with increasing buoyant density. Rapidly rotating, slowly rotating, and rotationally immobile forms of band 3 were observed in both sickle and normal RBC membranes. The fraction of rapidly rotating band 3 progressively decreased and the fraction of rotationally immobile band 3 progressively increased with increasing sickle RBC density. Changes in the fraction of rotationally immobile band 3 were not reversible upon hypotonic swelling of dense sickle RBCs, and normal RBCs osmotically shrunken in sucrose buffers failed to manifest band 3 immobilization at median cell hemoglobin concentration values characteristic of dense sickle RBCs. We conclude that dense sickle and normal RBCs acquire irreversible membrane abnormalities that cause transmembrane protein immobilization and band 3 aggregation. Band 3 aggregates could serve as cell surface sites of autologous antibody binding and thereby lead to removal of dense sickle and normal (senescent) RBCs from the circulation.

Authors

J D Corbett, D E Golan

×

Full Text PDF

Download PDF (2.08 MB)

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts