Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116171

In vitro molecular reconstitution of the respiratory burst in B lymphoblasts from p47-phox-deficient chronic granulomatous disease.

B D Volpp and Y Lin

Department of Medicine, College of Medicine, University of Iowa, Iowa City.

Find articles by Volpp, B. in: PubMed | Google Scholar

Department of Medicine, College of Medicine, University of Iowa, Iowa City.

Find articles by Lin, Y. in: PubMed | Google Scholar

Published January 1, 1993 - More info

Published in Volume 91, Issue 1 on January 1, 1993
J Clin Invest. 1993;91(1):201–207. https://doi.org/10.1172/JCI116171.
© 1993 The American Society for Clinical Investigation
Published January 1, 1993 - Version history
View PDF
Abstract

Epstein-Barr virus-transformed lymphocytes generate superoxide in response to various agonists in an enzymatic reaction similar to that which occurs in stimulated phagocytes. We generated transformed B lymphoblast cell lines from controls, from four patients with p47-phox-deficient chronic granulomatous disease, and from three parents. The cells from controls and from the parents generated 7.0-35 nmol of O2-/10(7) cells per 30 min in response to phorbol myristate acetate. None of the patient cell lines generated any detectable superoxide. Both p47-phox and p67-phox were detected by immunoblot in the cytosol of control and parent cell lines and, as in neutrophils, these proteins had affinity for GTP-agarose. The patients' cell lines contained no detectable p47-phox by immunoblot. mRNA for both cytosolic proteins was detected in all cell lines. We generated cDNA and obtained multiple clones from two patients by polymerase chain reaction. One patient was a compound heterozygote with each allele resulting in an early stop codon. Clones derived from the other patient demonstrated only a GT deletion at base 75. The cDNA for p47-phox was inserted into an EBV-expression vector and stably transfected cell lines were obtained using hygromycin B selection. Transfected cell lines from a p47-phox-deficient patient generated normal levels of superoxide and had readily detectable cytosolic p47-phox. Thus, B lymphoblasts provide an excellent model system for studies of the NADPH oxidase, for expression of functional recombinant forms of oxidase components, and for initial experimental approaches to genetic reconstitution in CGD.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 201
page 201
icon of scanned page 202
page 202
icon of scanned page 203
page 203
icon of scanned page 204
page 204
icon of scanned page 205
page 205
icon of scanned page 206
page 206
icon of scanned page 207
page 207
Version history
  • Version 1 (January 1, 1993): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts