Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116154

Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells.

N Ueda and S V Shah

Department of Medicine, University of Arkansas for Medical Sciences, Little Rock 72205.

Find articles by Ueda, N. in: JCI | PubMed | Google Scholar

Department of Medicine, University of Arkansas for Medical Sciences, Little Rock 72205.

Find articles by Shah, S. in: JCI | PubMed | Google Scholar

Published December 1, 1992 - More info

Published in Volume 90, Issue 6 on December 1, 1992
J Clin Invest. 1992;90(6):2593–2597. https://doi.org/10.1172/JCI116154.
© 1992 The American Society for Clinical Investigation
Published December 1, 1992 - Version history
View PDF
Abstract

Hydrogen peroxide (H2O2)-induced DNA damage and cell death have been attributed to the direct cytotoxicity of H2O2 and other oxidant species generated from H2O2. We examined the possibility that oxidants activate endonucleases leading to DNA damage and cell death in renal tubular epithelial cells, similar to that described for apoptosis. Within minutes, H2O2 caused DNA strand breaks in a dose-dependent manner, followed by cell death. DNA fragmentation was demonstrated both by the release of [3H]thymidine in 27,000-g supernatant as well as the occurrence of low molecular weight DNA fragments on agarose gel electrophoresis, characteristic of endonuclease cleavage. Endonuclease inhibitors, aurintricarboxylic acid, Evans blue, and zinc ion prevented H2O2-induced DNA strand breaks, fragmentation, and cell death. Inhibitors of protein or mRNA synthesis had only minor protection against H2O2-induced DNA damage in contrast to complete protection reported in apoptotic thymocytes. Micrococcal endonuclease induced similar DNA strand breaks in LLC-PK1 cells, and the endonuclease inhibitors prevented the events confirming the ability of endonucleases to induce DNA damage. The protective effect of aurintricarboxylic acid was not due to the prevention of the rise in intracellular free calcium. We conclude that endonuclease activation occurs as an early event leading to DNA damage and cell death in renal tubular epithelial cells exposed to oxidant stress and, in contrast to apoptotic thymocytes, does not require macromolecular synthesis.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2593
page 2593
icon of scanned page 2594
page 2594
icon of scanned page 2595
page 2595
icon of scanned page 2596
page 2596
icon of scanned page 2597
page 2597
Version history
  • Version 1 (December 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts