Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Interleukin 1 beta induces the formation of nitric oxide by beta-cells purified from rodent islets of Langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide.
J A Corbett, … , J R Lancaster Jr, M L McDaniel
J A Corbett, … , J R Lancaster Jr, M L McDaniel
Published December 1, 1992
Citation Information: J Clin Invest. 1992;90(6):2384-2391. https://doi.org/10.1172/JCI116129.
View: Text | PDF
Research Article

Interleukin 1 beta induces the formation of nitric oxide by beta-cells purified from rodent islets of Langerhans. Evidence for the beta-cell as a source and site of action of nitric oxide.

  • Text
  • PDF
Abstract

Nitric oxide has recently been implicated as the effector molecule that mediates IL-1 beta-induced inhibition of glucose-stimulated insulin secretion and beta-cell specific destruction. The pancreatic islet represents a heterogeneous cell population containing both endocrine cells (beta-[insulin], alpha-]glucagon], gamma[somatostatin], and PP-[polypeptide] secreting cells) and non-endocrine cells (fibroblast, macrophage, endothelial, and dendritic cells). The purpose of this investigation was to determine if the beta-cell, which is selectively destroyed during insulin-dependent diabetes mellitus, is both a source of IL-1 beta-induced nitric oxide production and also a site of action of this free radical. Pretreatment of beta-cells, purified by FACS with IL-1 beta results in a 40% inhibition of glucose-stimulated insulin secretion that is prevented by the nitric oxide synthase inhibitor, NG-monomethyl-L-arginine (NMMA). IL-1 beta induces the formation of nitric oxide by purified beta-cells as evidenced by the accumulation of cGMP, which is blocked by NMMA. IL-1 beta also induces the accumulation of cGMP by the insulinoma cell line Rin-m5F, and both NMMA as well as the protein synthesis inhibitor cycloheximide prevent this cGMP accumulation. Iron-sulfur proteins appear to be intracellular targets of nitric oxide. IL-1 beta induces the formation of an iron-dinitrosyl complex by Rin-m5F cells indicating that nitric oxide mediates the destruction of iron-sulfur clusters of iron containing enzymes. This is further demonstrated by IL-1 beta-induced inhibition of glucose oxidation by purified beta-cells, mitochondrial aconitase activity of dispersed islet cells, and mitochondrial aconitase activity of Rin-m5F cells, all of which are prevented by NMMA. IL-1 beta does not appear to affect FACS-purified alpha-cell metabolic activity or intracellular cGMP levels, suggesting that IL-1 beta does not exert any effect on alpha-cells. These results demonstrate that the islet beta-cell is a source of IL-1 beta-induced nitric oxide production, and that beta-cell mitochondrial iron-sulfur containing enzymes are one site of action of nitric oxide.

Authors

J A Corbett, J L Wang, M A Sweetland, J R Lancaster Jr, M L McDaniel

×

Usage data is cumulative from December 2022 through December 2023.

Usage JCI PMC
Text version 162 0
PDF 26 17
Scanned page 83 30
Citation downloads 16 0
Totals 287 47
Total Views 334

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts