Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116120

Adenosine triphosphate-dependent taurocholate transport in human liver plasma membranes.

H Wolters, F Kuipers, M J Slooff, and R J Vonk

Department of Pediatrics, University of Groningen, The Netherlands.

Find articles by Wolters, H. in: JCI | PubMed | Google Scholar

Department of Pediatrics, University of Groningen, The Netherlands.

Find articles by Kuipers, F. in: JCI | PubMed | Google Scholar

Department of Pediatrics, University of Groningen, The Netherlands.

Find articles by Slooff, M. in: JCI | PubMed | Google Scholar

Department of Pediatrics, University of Groningen, The Netherlands.

Find articles by Vonk, R. in: JCI | PubMed | Google Scholar

Published December 1, 1992 - More info

Published in Volume 90, Issue 6 on December 1, 1992
J Clin Invest. 1992;90(6):2321–2326. https://doi.org/10.1172/JCI116120.
© 1992 The American Society for Clinical Investigation
Published December 1, 1992 - Version history
View PDF
Abstract

Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles isolated from 15 human livers (donor age 6-64 yr). ATP stimulated the uptake of TC into both canalicular and basolateral human liver plasma membrane vesicles (cLPM and blLPM, respectively). Considerable interindividual variations in the transport velocity were observed in the different membrane preparations used: 9.0 +/- 1.3 (mean +/- SEM, n = 17; range 1.6-18.0) and 9.3 +/- 2.0 (range 1.1-29.8) pmol TC.mg protein-1.min-1 at 1.0 microM TC for cLPM and blLPM, respectively. TC transport was temperature sensitive and showed saturation kinetics with a high affinity for TC (Km 4.2 +/- 0.7 microM and 3.7 +/- 0.5 microM for cLPM and blLPM, respectively). Transport was dependent on the ATP concentration and saturable (Km 0.25 +/- 0.03 mM, n = 3). Neither nitrate, which reduces membrane potential, nor the protonophore FCCP strongly inhibited ATP-dependent TC transport, indicating that membrane potential and proton gradient are not involved in this process. TC transport was significantly inhibited by the classical anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (250 microM) and the glutathione conjugate S-(2,4-dinitrophenyl)glutathione (100 microM). In conclusion, high affinity ATP-dependent TC transport is present in human liver at both the canalicular and the basolateral sides of the hepatocyte.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2321
page 2321
icon of scanned page 2322
page 2322
icon of scanned page 2323
page 2323
icon of scanned page 2324
page 2324
icon of scanned page 2325
page 2325
icon of scanned page 2326
page 2326
Version history
  • Version 1 (December 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts