Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116100

Oxygen modulates prostacyclin synthesis in ovine fetal pulmonary arteries by an effect on cyclooxygenase.

P W Shaul, W B Campbell, M A Farrar, and R R Magness

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9063.

Find articles by Shaul, P. in: PubMed | Google Scholar

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9063.

Find articles by Campbell, W. in: PubMed | Google Scholar

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9063.

Find articles by Farrar, M. in: PubMed | Google Scholar

Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas 75235-9063.

Find articles by Magness, R. in: PubMed | Google Scholar

Published December 1, 1992 - More info

Published in Volume 90, Issue 6 on December 1, 1992
J Clin Invest. 1992;90(6):2147–2155. https://doi.org/10.1172/JCI116100.
© 1992 The American Society for Clinical Investigation
Published December 1, 1992 - Version history
View PDF
Abstract

Prostacyclin (PGI2) plays an integral role in O2 mediation of pulmonary vasomotor tone in the fetus and newborn. We hypothesized that O2 modulates PGI2 synthesis in vitro in ovine fetal intrapulmonary arteries, with decreasing O2 causing attenuated synthesis. A decline in PO2 from 680 to 40 mmHg caused a 26% fall in basal PGI2 synthesis. PGI2 synthesis maximally stimulated by bradykinin, A23187, and arachidonic acid were also attenuated at low PO2, by 35%, 33%, and 35%, respectively. PGE2 synthesis was equally affected. In contrast, varying O2 did not alter PGI2 synthesis with exogenous PGH2, which is the product of cyclooxygenase and the substrate for prostacyclin synthetase. Prostaglandin-mediated effects of O2 on cAMP production were also examined. Decreasing PO2 to 40 mmHg caused complete inhibition of basal cAMP production, whereas cAMP production stimulated by exogenous PGI2 was not affected. In parallel studies of mesenteric arteries, PGI2 synthesis and cAMP production were enhanced at low O2. Thus, PGI2 synthesis in fetal intrapulmonary arteries is modulated by changes in O2, with decreasing O2 causing attenuated synthesis. This process is due to an effect on cyclooxygenase activity, it causes marked parallel alterations in cAMP production, and it is specific to the pulmonary circulation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2147
page 2147
icon of scanned page 2148
page 2148
icon of scanned page 2149
page 2149
icon of scanned page 2150
page 2150
icon of scanned page 2151
page 2151
icon of scanned page 2152
page 2152
icon of scanned page 2153
page 2153
icon of scanned page 2154
page 2154
icon of scanned page 2155
page 2155
Version history
  • Version 1 (December 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts