Bilirubin is conjugated with glucuronic acid in hepatocytes and subsequently secreted in bile. The major conjugate is bilirubin diglucuronide. Using sealed vesicles which are primarily derived from the canalicular (CMV) and sinusoidal (SMV) membrane vesicle domains of the plasma membrane of hepatocytes, we demonstrated that bilirubin glucuronides are transported by CMV by both ATP- and membrane potential-dependent transport systems. In CMV from normal rats, these processes are additive. In CMV from TR- rats, which have an autosomal recessively inherited defect in biliary secretion of nonbile acid organic anions, ATP-dependent transport of bilirubin diglucuronide was absent whereas the membrane potential driven system was retained. Other canalicular ATP-dependent transport systems, which were previously described for organic cations and bile acids, are functionally retained in TR- rats. Our study indicates that bilirubin glucuronides are primarily secreted into the bile canaliculus by an ATP-dependent mechanism which is defective in an animal model of the human Dubin-Johnson syndrome.
T Nishida, Z Gatmaitan, J Roy-Chowdhry, I M Arias
Usage data is cumulative from November 2022 through November 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 67 | 0 |
10 | 13 | |
Scanned page | 45 | 0 |
Citation downloads | 17 | 0 |
Totals | 139 | 13 |
Total Views | 152 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.