Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Interphase cytogenetics for the detection of the t(11;22)(q24;q12) in small round cell tumors.
M Giovannini, … , B S Emanuel, G A Evans
M Giovannini, … , B S Emanuel, G A Evans
Published November 1, 1992
Citation Information: J Clin Invest. 1992;90(5):1911-1918. https://doi.org/10.1172/JCI116068.
View: Text | PDF
Research Article

Interphase cytogenetics for the detection of the t(11;22)(q24;q12) in small round cell tumors.

  • Text
  • PDF
Abstract

Among the small round cell tumors differential diagnosis is particularly difficult for their undifferentiated or primitive character. In this mixed group of tumors, only the primitive neuroectodermal tumors, which include Ewing's sarcoma (ES), show the unique and consistent feature of the (11;22)(q24;q12) translocation, which can therefore be considered a hallmark of these neoplasias. We analyzed four primitive neuroectodermal tumor cell lines, one osteosarcoma cell line, and 11 patients by fluorescent in situ hybridization with cosmid clones 23.2 and 5.8, bracketing the t(11;22) at 11q24. Metaphase spreads from tumor cell lines, and from biopsy specimens of three patients with ES were analyzed. In the remaining eight patients comprising five ES, two small cell osteosarcomas and one chronic osteomyelitis, only nuclei preparations were available for analysis. We detected the t(11;22) in interphase nuclei of the four primitive neuroectodermal tumor cell lines, of three patients in which the karyotype demonstrated the translocation and in five cases of ES in which cytogenetic analysis had not been possible. Two cases of small cell osteosarcoma and one chronic osteomyelitis were also analyzed and were both normal with respect to the t(11;22). By analyzing cell lines and small round cell tumor samples by fluorescent in situ hybridization, we established that interphase cytogenetics is a rapid alternative to chromosomal analysis for the detection of the t(11;22) and represents an invaluable tool for the differential diagnosis of small round cell tumors.

Authors

M Giovannini, L Selleri, J A Biegel, K Scotlandi, B S Emanuel, G A Evans

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 103 5
PDF 38 12
Scanned page 275 3
Citation downloads 53 0
Totals 469 20
Total Views 489
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts