Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116042

Interleukin 4 inhibits in vitro proliferation of leukemic and normal human B cell precursors.

D Pandrau, S Saeland, V Duvert, I Durand, A M Manel, M T Zabot, N Philippe, and J Banchereau

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Pandrau, D. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Saeland, S. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Duvert, V. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Durand, I. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Manel, A. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Zabot, M. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Philippe, N. in: JCI | PubMed | Google Scholar

Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Find articles by Banchereau, J. in: JCI | PubMed | Google Scholar

Published November 1, 1992 - More info

Published in Volume 90, Issue 5 on November 1, 1992
J Clin Invest. 1992;90(5):1697–1706. https://doi.org/10.1172/JCI116042.
© 1992 The American Society for Clinical Investigation
Published November 1, 1992 - Version history
View PDF
Abstract

In the present study, we have investigated the effects of IL-4 on the proliferation and differentiation of leukemic and normal human B cell precursors (BCP). We have demonstrated that IL-4 significantly inhibited spontaneous [3H]thymidine ([3H]-TdR) incorporation by leukemic blasts from some B lineage acute lymphoblastic leukemia (BCP-ALL) patients (8 of 14). Furthermore, IL-4 was found to suppress the spontaneous and factor-dependent (IL-7 and IL-3) proliferation of normal BCP (CD10+ surface [s] IgM- cells) isolated from fetal bone marrow. Maximum growth inhibition of either leukemic or normal BCP was reached at low IL-4 concentrations (10 U/ml), and the effect was specifically neutralized by anti-IL-4 antibody. IL-4 was further found to induce the expression of CD20 antigen on BCP-ALL cells from a number of the cases examined (5 of 8), but in contrast to leukemic cells, IL-4 failed to induce CD20 antigen on normal BCP. Finally, IL-4 was found to induce neither the expression of cytoplasmic mu chain, nor the appearance of sIgM+ cells in cultures of normal or leukemic BCP. Our data indicate that IL-4 has the potential to inhibit cell proliferation in leukemic and normal human B lymphopoiesis but is unable to drive the transition from BCP to mature B cells.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1697
page 1697
icon of scanned page 1698
page 1698
icon of scanned page 1699
page 1699
icon of scanned page 1700
page 1700
icon of scanned page 1701
page 1701
icon of scanned page 1702
page 1702
icon of scanned page 1703
page 1703
icon of scanned page 1704
page 1704
icon of scanned page 1705
page 1705
icon of scanned page 1706
page 1706
Version history
  • Version 1 (November 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts