Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Regulation of lipoprotein lipase in the diabetic rat.
K Tavangar, … , A R Hoffman, F B Kraemer
K Tavangar, … , A R Hoffman, F B Kraemer
Published November 1, 1992
Citation Information: J Clin Invest. 1992;90(5):1672-1678. https://doi.org/10.1172/JCI116039.
View: Text | PDF
Research Article

Regulation of lipoprotein lipase in the diabetic rat.

  • Text
  • PDF
Abstract

Diabetes mellitus is associated with a reduction of lipoprotein lipase (LPL) activity and development of hypertriglyceridemia. In the current experiments the mechanisms involved in the regulation of LPL have been examined in control rats, streptozocin-induced diabetic rats, and diabetic rats treated chronically or with a single injection of insulin. Diabetes decreased adipose tissue LPL activity partially by decreasing immunoreactive LPL protein and the steady-state levels of LPL mRNA, but primarily by reducing the catalytic activity of LPL. Both chronic and acute insulin increased adipose tissue LPL activity by correcting the defect in the catalytic activity of LPL and increasing immunoreactive LPL protein; however, only chronic insulin restored LPL mRNA levels to normal. In the heart, LPL activity tended to be elevated with diabetes in parallel to an increase in immunoreactive LPL protein even though levels of LPL mRNA declined. Both chronic and acute insulin normalized LPL activity and immunoreactive LPL protein, while only chronic insulin corrected the levels of LPL mRNA. No changes in the catalytic activity of LPL in heart were detected among the groups. Thus, diabetes and insulin treatment regulate LPL expression pretranslationally, translationally, and post-translationally, with tissue-specific differences apparent in the mechanisms involved.

Authors

K Tavangar, Y Murata, M E Pedersen, J F Goers, A R Hoffman, F B Kraemer

×

Full Text PDF | Download (1.80 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts