Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Granulosa cell-derived insulin-like growth factor (IGF) binding proteins are inhibitory to IGF-I hormonal action. Evidence derived from the use of a truncated IGF-I analogue.
E Y Adashi, … , R G Rosenfeld, C Carlsson-Skwirut
E Y Adashi, … , R G Rosenfeld, C Carlsson-Skwirut
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1593-1599. https://doi.org/10.1172/JCI116028.
View: Text | PDF
Research Article

Granulosa cell-derived insulin-like growth factor (IGF) binding proteins are inhibitory to IGF-I hormonal action. Evidence derived from the use of a truncated IGF-I analogue.

  • Text
  • PDF
Abstract

An increasing body of information now suggests that insulin-like growth factor (IGF) binding proteins (BPs) may serve as antigonadotropins at the level of the ovary. It is the objective of the present communication to evaluate the functional role of endogenous (granulosa cell-derived) IGFBPs by exploiting the unique properties of des(1-3)IGF-I, a naturally occurring IGF-I analogue characterized as a weak ligand of IGFBPs but not of type I IGF receptors. Given IGFBP-replete circumstances, des(1-3)IGF-I proved more potent (10-fold) than its intact counterpart in promoting the follicle stimulating hormone (FSH)-stimulated accumulation of progesterone by cultured rat granulosa cells. In contrast, des(1-3)IGF-I proved virtually equipotent to the unmodified principle under IGFBP-deplete circumstances. Taken together, these findings are in keeping with the notion and that the apparently enhanced potency of des(1-3)IGF-I (under IGFBP-replete conditions) is due to its diminished affinity for endogenously generated IGFBPs and that rat granulosa cell-derived IGFBPs are inhibitory to IGF (and thus inevitably to gonadotropin) hormonal action. Accordingly, the reported ability of gonadotropins to attenuate IGFBP release by granulosa cells may be designed to enhance the bioavailability of endogenously generated IGFs in the best interest of ovarian steroidogenesis.

Authors

E Y Adashi, C E Resnick, E Ricciarelli, A Hurwitz, E Kokia, C Tedeschi, L Botero, E R Hernandez, R G Rosenfeld, C Carlsson-Skwirut

×

Full Text PDF | Download (1.36 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts