Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Myasthenia gravis. CD4+ T epitopes on the embryonic gamma subunit of human muscle acetylcholine receptor.
M P Protti, A A Manfredi, X D Wu, L Moiola, M W Dalton, J F Howard Jr, B M Conti-Tronconi
M P Protti, A A Manfredi, X D Wu, L Moiola, M W Dalton, J F Howard Jr, B M Conti-Tronconi
View: Text | PDF
Research Article

Myasthenia gravis. CD4+ T epitopes on the embryonic gamma subunit of human muscle acetylcholine receptor.

  • Text
  • PDF
Abstract

In myasthenia gravis (MG) an autoimmune response against muscle acetylcholine receptor (AChR) occurs. Embryonic muscle AChR contains a gamma subunit, substituted in adult muscle by a homologous epsilon subunit. Antibodies and CD4+ cells specific for embryonic AChR have been demonstrated in MG patients. We identified sequence segments of the human gamma subunit forming epitopes recognized by four embryonic AChR-specific CD4+ T cell lines, propagated from MG patients' blood by stimulation with synthetic peptides corresponding to the human gamma subunit sequence. Each line had an individual epitope repertoire, but two 20-residue sequence regions were recognized by three lines of different HLA haplotype. Most T epitope sequences were highly diverged between the gamma and the other AChR subunits, confirming the specificity of the T cells for embryonic AChR. These T cells may have been sensitized against AChR expressed by a tissue other than innervated skeletal muscle, possibly the thymus, which expresses an embryonic muscle AChR-like protein, containing a gamma subunit. Several sequence segments forming T epitopes are similar to regions of microbial and/or mammalian proteins unrelated to the AChR. These findings are consistent with the possibility that T cell cross-reactivity between unrelated proteins ("molecular mimicry"), proposed as a cause of autoimmune responses, is not a rare event.

Authors

M P Protti, A A Manfredi, X D Wu, L Moiola, M W Dalton, J F Howard Jr, B M Conti-Tronconi

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 138 6
PDF 76 6
Scanned page 291 9
Citation downloads 89 0
Totals 594 21
Total Views 615
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts