Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis.
J Savill, … , Y Ren, C Haslett
J Savill, … , Y Ren, C Haslett
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1513-1522. https://doi.org/10.1172/JCI116019.
View: Text | PDF
Research Article

Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis.

  • Text
  • PDF
Abstract

We have investigated the cell surface recognition mechanisms used by human monocyte-derived macrophages (M phi) in phagocytosis of intact aging human neutrophils (PMNs) undergoing apoptosis. This study shows that the adhesive protein thrombospondin (TSP) was present in the interaction, both associated with the M phi surface and in solution at a mean concentration of 0.59 micrograms/ml. The interaction was inhibited by treatment of M phi (but not aged PMN) with cycloheximide, but could be "rescued" by replenishment with exogenous TSP. Under control conditions, M phi recognition of aged PMNs was specifically potentiated by purified platelet TSP at 5 micrograms/ml, present either in the interaction or if preincubated with either cell type, suggesting that TSP might act as a "molecular bridge" between the two cell types. In support, both aged PMN and M phi were found to adhere to TSP, and phagocytosis of aged PMN was specifically inhibited by (a) excess soluble TSP; (b) antibodies to TSP that also inhibit TSP-mediated adhesion to aged PMN; and (c) down-regulation of M phi receptors for TSP by plating M phi on TSP-coated surfaces. Furthermore, inhibition with mAbs/Arg-Gly-Asp-Ser peptide of the candidate M phi receptors for TSP, CD36, and alpha v beta 3 exerted synergistic effects on both M phi recognition of aged PMN and M phi adhesion to TSP, indicating that "two point" adhesion of TSP to these M phi structures is involved in phagocytosis of aged PMN. Our findings indicate newly defined roles for TSP and CD36 in phagocytic clearance of senescent neutrophils, which may limit inflammatory tissue injury and promote resolution.

Authors

J Savill, N Hogg, Y Ren, C Haslett

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 902 0
PDF 76 16
Scanned page 290 5
Citation downloads 52 0
Totals 1,320 21
Total Views 1,341
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts