Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI116000

Major histocompatibility complex haplotypes and complement C4 alleles in systemic lupus erythematosus. Results of a multicenter study.

K Hartung, M P Baur, R Coldewey, M Fricke, J R Kalden, H J Lakomek, H H Peter, D Schendel, P M Schneider, and S A Seuchter

University of Hannover, Germany.

Find articles by Hartung, K. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Baur, M. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Coldewey, R. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Fricke, M. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Kalden, J. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Lakomek, H. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Peter, H. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Schendel, D. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Schneider, P. in: PubMed | Google Scholar

University of Hannover, Germany.

Find articles by Seuchter, S. in: PubMed | Google Scholar

Published October 1, 1992 - More info

Published in Volume 90, Issue 4 on October 1, 1992
J Clin Invest. 1992;90(4):1346–1351. https://doi.org/10.1172/JCI116000.
© 1992 The American Society for Clinical Investigation
Published October 1, 1992 - Version history
View PDF
Abstract

In a multicenter study more than 300 central European systemic lupus erythematosus (SLE) patients were examined for HLA-B, HLA-DR, and complement C4 phenotypes. For 174 SLE patients MHC haplotypes were determined by family segregation analysis, and for 155 patients C4 gene deletions were determined by TaqI restriction fragment length polymorphism. Two haplotypes, B8-C4AQ0-C4B1-DR3 and B7-C4A3-C4B1-DR2, were identified as risk factors for SLE. These findings were confirmed by applying the haplotype frequency difference (HFD) method, which uses nontransmitted haplotypes from the family study as internal controls. Furthermore, only HLA-DR2, but not DR3, B7, or B8, was significantly increased in SLE patients independently of the two risk haplotypes. C4A gene deletions, but not silent C4AQ0 alleles, were increased in SLE patients and neither C4BQ0 alleles nor C4B gene deletions were increased. The observed frequencies of homozygosity and heterozygosity for the two haplotypes and the frequencies of homozygotes for C4AQ0 and C4A deletions did not differ from the expected values, indicating that the risk for SLE is conveyed by single allele effects. In conclusion, there are two MHC-linked susceptibility factors for Caucasian SLE patients carried by the haplotypes B7-DR2 and B8-DR3. The results argue against C4Q0 alleles being the decisive factors increasing susceptibility to SLE.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1346
page 1346
icon of scanned page 1347
page 1347
icon of scanned page 1348
page 1348
icon of scanned page 1349
page 1349
icon of scanned page 1350
page 1350
icon of scanned page 1351
page 1351
Version history
  • Version 1 (October 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts