Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Upcoming)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Inhibition of apical Na+ channels in rabbit cortical collecting tubules by basolateral prostaglandin E2 is modulated by protein kinase C.
B N Ling, … , K E Kokko, D C Eaton
B N Ling, … , K E Kokko, D C Eaton
Published October 1, 1992
Citation Information: J Clin Invest. 1992;90(4):1328-1334. https://doi.org/10.1172/JCI115998.
View: Text | PDF
Research Article

Inhibition of apical Na+ channels in rabbit cortical collecting tubules by basolateral prostaglandin E2 is modulated by protein kinase C.

  • Text
  • PDF
Abstract

We used the cell-attached patch clamp technique to investigate the interaction of exogenous prostaglandins (PG), intracellular [Ca2+]i, and protein kinase C (PKC) on the high selectivity, 4 pS Na+ channel found in the principal cell apical membrane of rabbit cortical collecting tubule (CCT) cultures grown on collagen supports with 1.5 microM aldosterone. Application of 0.5 microM PGE2 to the basolateral membrane decreased mean NP0 (number of channels times the open probability) for apical Na+ channels by 46.5% (n = 9). There was no consistent change in NP0 after apical 0.5 microM PGE2 (n = 12) or after apical or basolateral 0.5 microM PGF2 alpha (n = 8). Release of [Ca2+]i stores with 0.25 microM thapsigargin (n = 7), or activation of apical membrane PKC with apical 0.1 microM 4 beta-phorbol-12-myristate-13-acetate (n = 5) or 10 microM 1-oleyl-2-acetylglycerol (n = 4) also decreased NP0. Depletion of [Ca2+]i stores (0.25 microM thapsigargin pretreatment) (n = 7) or inhibition of apical PKC (100 microM D-sphingosine pretreatment) (n = 8) abolished the inhibitory effects of basolateral PGE2. Conclusions: (a) apical Na+ transport in rabbit CCT principal cells is modulated by basolateral PGE2; (b) the mechanism involves release of IP3-sensitive, [Ca2+]i stores; and (c) Ca(2+)-dependent activation of apical membrane PKC, which then inhibits apical Na+ channels.

Authors

B N Ling, K E Kokko, D C Eaton

×

Full Text PDF | Download (1.34 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts