Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115992

Human intrahepatic biliary epithelial cells proliferate in vitro in response to human hepatocyte growth factor.

R Joplin, T Hishida, H Tsubouchi, Y Daikuhara, R Ayres, J M Neuberger, and A J Strain

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Joplin, R. in: JCI | PubMed | Google Scholar

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Hishida, T. in: JCI | PubMed | Google Scholar

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Tsubouchi, H. in: JCI | PubMed | Google Scholar

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Daikuhara, Y. in: JCI | PubMed | Google Scholar

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Ayres, R. in: JCI | PubMed | Google Scholar

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Neuberger, J. in: JCI | PubMed | Google Scholar

Liver Unit, Queen Elizabeth Hospital, Birmingham, United Kingdom.

Find articles by Strain, A. in: JCI | PubMed | Google Scholar

Published October 1, 1992 - More info

Published in Volume 90, Issue 4 on October 1, 1992
J Clin Invest. 1992;90(4):1284–1289. https://doi.org/10.1172/JCI115992.
© 1992 The American Society for Clinical Investigation
Published October 1, 1992 - Version history
View PDF
Abstract

In previous studies, intrahepatic human biliary epithelial cells (BEC) were isolated in high purity. However, these cells demonstrated only limited growth responses. Here we report that human BEC proliferate in response to human hepatocyte growth factor (hHGF), retain BEC-specific phenotype, and can be serially passaged. BEC showed dose-dependent growth in response to 0.01-100 ng/ml hHGF. The maximum S-phase labeling index reached 40% with half-maximal stimulation at 1 ng/ml. The response of cells from normal and primary biliary cirrhotic liver to hHGF was similar. Cultures were immunostained with specific antibodies and then processed for [3H]thymidine autoradiography. Proliferating cells expressed BEC-specific markers (HEA125 and CK-19), but were negative for desmin and factor VIII-related antigen. Occasional vimentin-positive cells were observed, but these were nonproliferative. In conclusion, cells responding to hHGF were clearly BEC in origin. The observation that HGF is mitogenic for BEC as well as hepatocytes has important implications. First, greater yields of intrahepatic BEC are available for subsequent studies of the pathogenesis and etiology of diseases of the biliary epithelium. Secondly, some means of regulating the cellular response to HGF in vivo must operate, in that HGF levels rise early after partial hepatectomy and yet BEC proliferate 24 h later than hepatocytes.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1284
page 1284
icon of scanned page 1285
page 1285
icon of scanned page 1286
page 1286
icon of scanned page 1287
page 1287
icon of scanned page 1288
page 1288
icon of scanned page 1289
page 1289
Version history
  • Version 1 (October 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts