Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115976

Molecular cloning and preliminary characterization of a novel cytoplasmic antigen recognized by myasthenia gravis sera.

T Gordon, B Grove, J C Loftus, T O'Toole, R McMillan, J Lindstrom, and M H Ginsberg

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Gordon, T. in: JCI | PubMed | Google Scholar

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Grove, B. in: JCI | PubMed | Google Scholar

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Loftus, J. in: JCI | PubMed | Google Scholar

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by O'Toole, T. in: JCI | PubMed | Google Scholar

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by McMillan, R. in: JCI | PubMed | Google Scholar

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Lindstrom, J. in: JCI | PubMed | Google Scholar

Department of Basic and Clinical Research, Research Institute of Scripps Clinic, La Jolla, California 92037.

Find articles by Ginsberg, M. in: JCI | PubMed | Google Scholar

Published September 1, 1992 - More info

Published in Volume 90, Issue 3 on September 1, 1992
J Clin Invest. 1992;90(3):992–999. https://doi.org/10.1172/JCI115976.
© 1992 The American Society for Clinical Investigation
Published September 1, 1992 - Version history
View PDF
Abstract

A cDNA clone was isolated by screening of a lambda gt11 endothelial expression library with serum from a patient with myasthenia gravis (MG). Rabbit antisera raised against the recombinant protein and human MG sera reactive with the clone immunoblotted an M(r) integral of 250,000 polypeptide (gravin) present in endothelial cells and several adherent cells. Gravin was not detected in platelets, leukocytes, U937, or human erythroleukemic (HEL) cell lines, but was expressed in HEL cells after induction with phorbol myristate acetate. Northern blot analysis showed two transcripts of approximately 6.7 and 8.4 kb in endothelial cells but not U937 or HEL cells. Indirect immunofluorescence of permeabilized cells revealed a trabecular network of gravin staining with a distinct linear component. Antibodies to gravin, were present in sera from 22:72 (31%) of MG patients. In contrast 0:50 normal sera and 1:72 sera from patients with other autoimmune diseases contained antigravin antibodies. Gravin is not likely to be a nonerythroid spectrin, talin, myosin, or actin-binding protein based on the lack of reactivity of antigravin with these polypeptides in immunoblots. The nucleotide sequence of the immunoreactive clone indicated that it encodes a highly acidic polypeptide fragment that contains the carboxyl terminus of the protein. Neither amino acid nor nucleotide sequences were present in Genbank, EMBL, or Swissprot databases as of March, 1992. These data indicate that gravin is an inducible, cell type-specific cytoplasmic protein and that auto-antibodies to gravin may be highly specific for MG.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 992
page 992
icon of scanned page 993
page 993
icon of scanned page 994
page 994
icon of scanned page 995
page 995
icon of scanned page 996
page 996
icon of scanned page 997
page 997
icon of scanned page 998
page 998
icon of scanned page 999
page 999
Version history
  • Version 1 (September 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts