Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115971

Control of human B cell tumor growth in severe combined immunodeficiency mice by monoclonal anti-B cell antibodies.

A Durandy, N Brousse, F Rozenberg, G De Saint Basile, A M Fischer, and A Fischer

Institut National de la Santé et de la Recherche Médicale, U 132, Hôpital des Enfants-Malades, Paris, France.

Find articles by Durandy, A. in: PubMed | Google Scholar

Institut National de la Santé et de la Recherche Médicale, U 132, Hôpital des Enfants-Malades, Paris, France.

Find articles by Brousse, N. in: PubMed | Google Scholar

Institut National de la Santé et de la Recherche Médicale, U 132, Hôpital des Enfants-Malades, Paris, France.

Find articles by Rozenberg, F. in: PubMed | Google Scholar

Institut National de la Santé et de la Recherche Médicale, U 132, Hôpital des Enfants-Malades, Paris, France.

Find articles by De Saint Basile, G. in: PubMed | Google Scholar

Institut National de la Santé et de la Recherche Médicale, U 132, Hôpital des Enfants-Malades, Paris, France.

Find articles by Fischer, A. in: PubMed | Google Scholar

Institut National de la Santé et de la Recherche Médicale, U 132, Hôpital des Enfants-Malades, Paris, France.

Find articles by Fischer, A. in: PubMed | Google Scholar

Published September 1, 1992 - More info

Published in Volume 90, Issue 3 on September 1, 1992
J Clin Invest. 1992;90(3):945–952. https://doi.org/10.1172/JCI115971.
© 1992 The American Society for Clinical Investigation
Published September 1, 1992 - Version history
View PDF
Abstract

Severe combined immunodeficiency (scid) mice develop EBV (+)B cell tumors after infusion of EBV(+)B cells or of B cells and EBV. In this study, scid mice were infused with B cell lines derived from three patients who developed a B lymphocyte proliferative disorder after bone marrow or organ transplantation. Intraperitoneal injection of 5 x 10(6) B cells induced tumor growth in all mice, leading to death within 60 d. Human B cells were identified in spleen and bone marrow by means of immunofluorescence or EBV genome amplification, and human IgM was detected in serum. Infusion of murine monoclonal antibodies specific for human B cell membrane antigens CD21, CD24, and CD23 was effective in 80% of animals, against two of the three cell lines preventing tumor development or inducing remission according to the time of treatment. The effect was antibody dose dependent and was optimal with four intravenous infusions of at least 0.1 mg 4 d apart. Human IgM in serum and human B cells in spleen and bone marrow became undetectable when peritoneal tumors regressed completely. Infusions of IgG1 isotype-matched anti-CD4 antibody or anti-CD3 antibody had no effect. Tumors developed or recurred in 50% of these animals injected with one of the B cell line 3 mo after treatment was stopped. The same anti-CD21 and anti-CD24 antibodies had been used to treat the three patients, and shown similar degrees of effectiveness as in the scid mouse model. These results indicate that scid mice may be suitable for assessing therapeutic approaches to human B cell proliferation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 945
page 945
icon of scanned page 946
page 946
icon of scanned page 947
page 947
icon of scanned page 948
page 948
icon of scanned page 949
page 949
icon of scanned page 950
page 950
icon of scanned page 951
page 951
icon of scanned page 952
page 952
Version history
  • Version 1 (September 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts