Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115934

The serpin-enzyme complex (SEC) receptor mediates the neutrophil chemotactic effect of alpha-1 antitrypsin-elastase complexes and amyloid-beta peptide.

G Joslin, G L Griffin, A M August, S Adams, R J Fallon, R M Senior, and D H Perlmutter

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Joslin, G. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Griffin, G. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by August, A. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Adams, S. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Fallon, R. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Senior, R. in: JCI | PubMed | Google Scholar

Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110.

Find articles by Perlmutter, D. in: JCI | PubMed | Google Scholar

Published September 1, 1992 - More info

Published in Volume 90, Issue 3 on September 1, 1992
J Clin Invest. 1992;90(3):1150–1154. https://doi.org/10.1172/JCI115934.
© 1992 The American Society for Clinical Investigation
Published September 1, 1992 - Version history
View PDF
Abstract

The serpin-enzyme complex (SEC) receptor mediates catabolism of alpha 1-antitrypsin (alpha 1-AT)-elastase complexes and increases in synthesis of alpha 1-AT in cell culture. The SEC receptor recognizes a pentapeptide domain on alpha 1-AT-elastase complexes (alpha 1-AT 370-374), and the same domain in several other serpins, amyloid-beta peptide, substance P, and other tachykinins. Thus, it has also been implicated in the biological properties of these ligands, including the neurotoxic effect of amyloid-beta peptide. In this study, we examined the possibility that the SEC receptor mediates the previously described neutrophil chemotactic activity of alpha 1-AT-elastase complexes, and whether the other ligands for the SEC receptor have neutrophil chemotactic activity. The results show that 125I-peptide 105Y (based on alpha 1-AT 359-374) binds specifically and saturably to human neutrophils, and the characteristics of this binding are almost identical to that of monocytes and hepatoma-derived hepatocytes. Peptide 105Y and amyloid-beta peptide mediate chemotaxis for neutrophils with maximal stimulation at 1-10 nM. Mutant or deleted forms of peptide 105Y, which do not bind to the SEC receptor, have no effect. The neutrophil chemotactic effect of alpha 1-AT-elastase complexes is blocked by antiserum to peptide 105Y and by antiserum to the SEC receptor, but not by control antiserum. Preincubation of neutrophils with peptide 105Y or substance P completely blocks the chemotactic activity of amyloid-beta peptide, but not that of FMLP. These results, therefore, indicate that the SEC receptor can be modulated by homologous desensitization and raise the possibility that pharmacological manipulation of this receptor will modify the local tissue response to inflammation/injury and the neuropathologic reaction of Alzheimer's disease.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1150
page 1150
icon of scanned page 1151
page 1151
icon of scanned page 1152
page 1152
icon of scanned page 1153
page 1153
icon of scanned page 1154
page 1154
Version history
  • Version 1 (September 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts