Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115915

Organ distribution of the three rat endothelin messenger RNAs and the effects of ischemia on renal gene expression.

J D Firth and P J Ratcliffe

Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, England.

Find articles by Firth, J. in: JCI | PubMed | Google Scholar

Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, England.

Find articles by Ratcliffe, P. in: JCI | PubMed | Google Scholar

Published September 1, 1992 - More info

Published in Volume 90, Issue 3 on September 1, 1992
J Clin Invest. 1992;90(3):1023–1031. https://doi.org/10.1172/JCI115915.
© 1992 The American Society for Clinical Investigation
Published September 1, 1992 - Version history
View PDF
Abstract

To determine the organ distribution of production of the three endothelin (ET) isopeptides, we have developed three ribonuclease protection assays specific for the messenger RNAs (mRNAs) of rat ETs 1, 2, and 3.12 organs from adult Sprague-Dawley rats were examined: heart, lung, liver, spleen, kidney, stomach, small intestine, large intestine, testis, muscle, salivary gland, and brain. The mRNA for ET1 was five times more abundant in the lung than in any other organ studied, moderate expression was seen in the large intestine, and lower levels of mRNA were detected in each of the other organs examined. ET2 was expressed at high level in both large and small intestine and at low level in stomach, muscle, and heart, but ET2 mRNA could not be detected elsewhere. ET3 mRNA was found in all organs, particularly in small intestine, lung, kidney, and large intestine. Because of reports suggesting that ETs might be involved in the hypoperfusion and hypofiltration observed in postischemic kidneys, we have also studied levels of mRNA in kidneys that had previously been subjected to 25 or 45 min of clamping of the renal pedicle. At 6 h after 45 min of ischemia, ET1 mRNA increased to a peak of 421 +/- 69% (mean +/- SEM, n = 3) of that in a standard renal RNA preparation. By contrast, ET3 mRNA decreased in the postischemic organ, falling to a value of 19 +/- 2% of standard at the same time point. The effects of ischemia on ET1 and ET3 mRNAs were long-lasting, with elevation of ET1 and depression of ET3 persisting for days. ET2 mRNA remained undetectable throughout. These findings (a) support a role for ET1 in postischemic renal vascular phenomena and (b) demonstrate a situation in which the expression of ET isoforms is clearly subject to differential regulation.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1023
page 1023
icon of scanned page 1024
page 1024
icon of scanned page 1025
page 1025
icon of scanned page 1026
page 1026
icon of scanned page 1027
page 1027
icon of scanned page 1028
page 1028
icon of scanned page 1029
page 1029
icon of scanned page 1030
page 1030
icon of scanned page 1031
page 1031
Version history
  • Version 1 (September 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts