Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels.
T Hayek, … , A R Tall, J L Breslow
T Hayek, … , A R Tall, J L Breslow
Published August 1, 1992
Citation Information: J Clin Invest. 1992;90(2):505-510. https://doi.org/10.1172/JCI115887.
View: Text | PDF
Research Article

An interaction between the human cholesteryl ester transfer protein (CETP) and apolipoprotein A-I genes in transgenic mice results in a profound CETP-mediated depression of high density lipoprotein cholesterol levels.

  • Text
  • PDF
Abstract

We have previously described two transgenic mouse lines, one heterozygous for the human apo A-I gene and the other heterozygous for a human cholesteryl ester transfer protein (CETP) minigene driven by the mouse metallothionein-I gene promoter. In the current study, these two lines were crossed producing control, HuCETPTg, HuAITg, and HuAICETPTg mice to study the influence of CETP on HDL cholesterol levels, particle size distribution, and metabolism in animals with mouse and human-like HDL. In the HuCETPTg and HuAICETPTg animals, zinc induction approximately doubled plasma CETP activity, with no activity in plasma from the control and HuAITg animals. The only significant effect of CETP on lipoprotein subfraction cholesterol concentrations was for HDL-C. Compared to control animals, HuCETPTg animals had lower HDL-C, 20% before and 35% after Zn induction, and compared to HuAITg animals, HuAICETPTg animals had lower HDL-C, 35% before and 66% after Zn induction. Control and HuCETPTg HDL consist primarily of a single size population with a mean diameter of 10.00 +/- 0.10 nm and 9.71 +/- 0.05 nm, respectively. HuAITg HDL consists primarily of three distinct HDL size subpopulations with peak diameters of 10.35 +/- 0.08 nm, 8.80 +/- 0.06 nm, 7.40 +/- 0.10 nm, and HuAICETPTg HDL also consists primarily of three distinct HDL size subpopulations with peak diameters of 9.87 +/- 0.05 nm, 8.60 +/- 0.10 nm, 7.30 +/- 0.15 nm before, and 9.71 +/- 0.08 nm, 8.50 +/- 0.11 nm, 7.27 +/- 0.15 nm after zinc induction, respectively. Western blotting analysis of nondenaturing gradient gels of plasma with a monoclonal antibody to CETP indicated that in HuCETPTg and HuAICETPTg mice, 22 and 100%, respectively, of the CETP was HDL associated. Turnover studies with HDL doubly labeled with 125I apo A-I and 3H cholesteryl linoleate indicated that the CETP-induced fall in HDL-C was associated with increased HDL-cholesterol ester fractional catabolic rate in both the absence and presence of human apo A-I, suggesting CETP-mediated transfer of HDL-cholesterol ester to apo B-containing lipoproteins. In summary, these studies suggest that CETP has a much more profound effect on HDL cholesterol levels in transgenic animals expressing human apo A-I. This may be due to an enhanced interaction of CETP with human compared to mouse apo A-I or to the HDL particles they produce.

Authors

T Hayek, T Chajek-Shaul, A Walsh, L B Agellon, P Moulin, A R Tall, J L Breslow

×

Usage data is cumulative from July 2024 through July 2025.

Usage JCI PMC
Text version 332 8
PDF 66 18
Scanned page 289 1
Citation downloads 85 0
Totals 772 27
Total Views 799
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts