Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment.
B Thorens, … , J L Leahy, G C Weir
B Thorens, … , J L Leahy, G C Weir
Published July 1, 1992
Citation Information: J Clin Invest. 1992;90(1):77-85. https://doi.org/10.1172/JCI115858.
View: Text | PDF
Research Article

The loss of GLUT2 expression by glucose-unresponsive beta cells of db/db mice is reversible and is induced by the diabetic environment.

  • Text
  • PDF
Abstract

Glucose-induced insulin secretion by beta cells of diabetic db/db mice was studied by a pancreas perfusion technique, and the levels of GLUT2 protein in pancreatic islets were assessed by immunofluorescence microscopy and protein blot analysis. Beta cells from diabetic mice had a high basal rate of insulin secretion; they did not respond to glucose stimulation but displayed a normal secretory response to arginine. At the same time, GLUT2 expression by db/db islets was lost whereas beta cells from nondiabetic db/+ mice expressed high levels of this transporter. GLUT2 levels in liver or kidney of diabetic mice were, however, mostly unaltered. Transplanting islets from db/db mice under the kidney capsule of db/+ mice restored normal GLUT2 levels. Conversely, transplantation of db/+ islets into db/db mice induced the disappearance of GLUT2 expression. When islets from db/+ mice were transplanted under the kidney capsule of streptozocin-diabetic mice, the immunodetection of GLUT2 also disappeared. We conclude that: (a) GLUT2 expression is decreased in glucose-unresponsive beta cells from db/db mice; (b) the decreased expression of GLUT2 is reversible; (c) the loss of GLUT2 expression is induced by the diabetic environment of db/db and streptozocin-induced diabetic mice. These observations together with previously published data suggest that a factor different from glucose or insulin regulates the beta cell expression of GLUT2.

Authors

B Thorens, Y J Wu, J L Leahy, G C Weir

×

Full Text PDF | Download (3.92 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts