Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat.
K A Nath, … , M D Levitt, M E Rosenberg
K A Nath, … , M D Levitt, M E Rosenberg
Published July 1, 1992
Citation Information: J Clin Invest. 1992;90(1):267-270. https://doi.org/10.1172/JCI115847.
View: Text | PDF
Research Article

Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat.

  • Text
  • PDF
Abstract

Heme proteins such as myoglobin or hemoglobin, when released into the extracellular space, can instigate tissue toxicity. Myoglobin is directly implicated in the pathogenesis of renal failure in rhabdomyolysis. In the glycerol model of this syndrome, we demonstrate that the kidney responds to such inordinate amounts of heme proteins by inducing the heme-degradative enzyme, heme oxygenase, as well as increasing the synthesis of ferritin, the major cellular repository for iron. Prior recruitment of this response with a single preinfusion of hemoglobin prevents kidney failure and drastically reduces mortality (from 100% to 14%). Conversely, ablating this response with a competitive inhibitor of heme oxygenase exacerbates kidney dysfunction. We provide the first in vivo evidence that induction of heme oxygenase coupled to ferritin synthesis is a rapid, protective antioxidant response. Our findings suggest a therapeutic strategy for populations at a high risk for rhabdomyolysis.

Authors

K A Nath, G Balla, G M Vercellotti, J Balla, H S Jacob, M D Levitt, M E Rosenberg

×

Full Text PDF | Download (889.87 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts