Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Amendment history:
  • Correction (April 1993)

Research Article Free access | 10.1172/JCI115840

The B7/BB1 antigen provides one of several costimulatory signals for the activation of CD4+ T lymphocytes by human blood dendritic cells in vitro.

J W Young, L Koulova, S A Soergel, E A Clark, R M Steinman, and B Dupont

Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Find articles by Young, J. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Find articles by Koulova, L. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Find articles by Soergel, S. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Find articles by Clark, E. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Find articles by Steinman, R. in: PubMed | Google Scholar

Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021.

Find articles by Dupont, B. in: PubMed | Google Scholar

Published July 1, 1992 - More info

Published in Volume 90, Issue 1 on July 1, 1992
J Clin Invest. 1992;90(1):229–237. https://doi.org/10.1172/JCI115840.
© 1992 The American Society for Clinical Investigation
Published July 1, 1992 - Version history
View PDF
Abstract

T cells respond to peptide antigen in association with MHC products on antigen-presenting cells (APCs). A number of accessory or costimulatory molecules have been identified that also contribute to T cell activation. Several of the known accessory molecules are expressed by freshly isolated dendritic cells, a distinctive leukocyte that is the most potent APC for the initiation of primary T cell responses. These include ICAM-1 (CD54), LFA-3 (CD58), and class I and II MHC products. Dendritic cells also constitutively express the accessory ligand for CD28, B7/BB1, which has not been previously identified on circulating leukocytes freshly isolated from peripheral blood. Dendritic cell expression of both B7/BB1 and ICAM-1 (CD54) increases after binding to allogeneic T cells. Individual mAbs against several of the respective accessory T cell receptors, e.g., anti-CD2, anti-CD4, anti-CD11a, and anti-CD28, inhibit T cell proliferation in the dendritic cell-stimulated allogeneic mixed leukocyte reaction (MLR) by 40-70%. Combinations of these mAbs are synergistic in achieving near total inhibition. Other T cell-reactive mAbs, e.g., anti-CD5 and anti-CD45, are not inhibitory. Lymphokine secretion and blast transformation are similarly reduced when active accessory ligand-receptor interactions are blocked in the dendritic cell-stimulated allogeneic MLR. Dendritic cells are unusual in their comparably higher expression of accessory ligands, among which B7/BB1 can now be included. These are pertinent to the efficiency with which dendritic cells in small numbers elicit strong primary T cell proliferative and effector responses.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 229
page 229
icon of scanned page 230
page 230
icon of scanned page 231
page 231
icon of scanned page 232
page 232
icon of scanned page 233
page 233
icon of scanned page 234
page 234
icon of scanned page 235
page 235
icon of scanned page 236
page 236
icon of scanned page 237
page 237
Version history
  • Version 1 (July 1, 1992): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts