Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Mineralocorticoid modulation of apical and basolateral membrane H+/OH-/HCO3- transport processes in the rabbit inner stripe of outer medullary collecting duct.
S R Hays
S R Hays
Published July 1, 1992
Citation Information: J Clin Invest. 1992;90(1):180-187. https://doi.org/10.1172/JCI115834.
View: Text | PDF
Research Article

Mineralocorticoid modulation of apical and basolateral membrane H+/OH-/HCO3- transport processes in the rabbit inner stripe of outer medullary collecting duct.

  • Text
  • PDF
Abstract

To examine the mechanism by which mineralocorticoids regulate HCO3- absorption in the rabbit inner stripe of the outer medullary collecting duct, we microfluorometrically measured intracellular pH (pHi) in in vitro perfused tubules using 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF) assaying the apical and basolateral membrane H+/OH-/HCO3- transport processes in three groups of animals: those receiving chronic in vivo DOCA treatment (5 mg/kg per d x 2 wk); those with surgical adrenalectomy (ADX, [chronic x 2 wk]) on glucocorticoid replacement; and controls. Baseline pHi was not different in the three groups. Cellular volume (vol/mm) was increased 38% in DOCA tubules versus controls, but unchanged in ADX tubules versus controls. Buffer capacities (BT) were not different in the three groups. Apical membrane H+ pump activity, assayed as the Na(+)-independent pHi recovery from an acid load (NH3/NH4+ prepulse) and expressed as JH (dpHi/dt.vol/mm.BT) was increased 76% in DOCA tubules versus controls, and decreased 56% in ADX tubules versus controls. Basolateral membrane Cl-/HCO3- exchange activity assayed as the pHi response to basolateral Cl- addition was increased 73% in DOCA tubules versus controls, and decreased 44% in ADX tubules versus controls. When examined as a function of varying [Cl-], the Vmax of Cl-/HCO3- exchange activity was significantly increased in DOCA tubules (control, 72.7 +/- 15.7 pmol.mm-1.min-1 vs DOCA, 132.3 +/- 22.5 pmol.mm-1.min-1, P less than 0.02), while the K1/2 for Cl- was unchanged. Basolateral membrane Na+/H+ antiporter activity assayed as the Na(+)-dependent pHi recovery from an acid load was not changed in chronic DOCA tubules versus controls. In conclusion, the apical membrane H+ pump and basolateral membrane Cl-/HCO3- exchanger of the rabbit OMCDi are regulated in parallel without chronic alterations in pHi under the conditions of mineralocorticoid excess and deficiency. The parallel changes in these transporters accounts for the alterations in OMCDi HCO3- absorption seen under these conditions.

Authors

S R Hays

×

Full Text PDF | Download (1.61 MB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts