Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog.
D W Landry, J A Oliver
D W Landry, J A Oliver
Published June 1, 1992
Citation Information: J Clin Invest. 1992;89(6):2071-2074. https://doi.org/10.1172/JCI115820.
View: Text | PDF
Research Article

The ATP-sensitive K+ channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog.

  • Text
  • PDF
Abstract

Endotoxemia causes hypotension characterized by vasodilation and resistance to vasopressor agents. The molecular mechanisms responsible for these changes are unclear. The ATP-regulated K+ (K+ATP) channel has recently been found to be an important modulator of vascular smooth muscle tone which may transduce local metabolic changes into alterations of vascular flow. We report here that in endotoxic hypotension, the sulfonylurea glyburide, a specific inhibitor for the K+ATP channel, caused vasoconstriction and restoration of blood pressure. Glyburide also induced vasoconstriction and restoration of blood pressure in the vasodilatory hypotension caused by hypoxic lactic acidosis, while it was ineffective in the hypotension induced by sodium nitroprusside. Thus, vasodilation and hypotension in septic shock are, at least in part, due to activation of the K+ATP channel in vascular smooth muscle, and anaerobic metabolism with acidosis is a sufficient stimulus for channel activation. Because anaerobic metabolism and acidosis are common features in shock of any etiology, sulfonylureas may be effective therapeutic agents in the treatment of shock.

Authors

D W Landry, J A Oliver

×

Full Text PDF | Download (868.25 KB)


Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts